We have carried out a hydrodynamical code comparison study of interacting multiphase fluids. The two commonly used techniques of grid and smoothed particle hydrodynamics (SPH) show striking differences in their ability to model processes that are fundamentally important across many areas of astrophysics. Whilst Eulerian grid based methods are able to resolve and treat important dynamical instabilities, such as Kelvin-Helmholtz or Rayleigh-Taylor, these processes are poorly or not at all resolved by existing SPH techniques. We show that the reason for this is that SPH, at least in its standard implementation, introduces spurious pressure forces on particles in regions where there are steep density gradients. This results in a boundary gap of the size of the SPH smoothing kernel over which information is not transferred.Comment: 15 pages, 13 figures, to be submitted to MNRAS. For high-resolution figures, please see http://www-theorie.physik.unizh.ch/~agertz
Stellar feedback plays a key role in galaxy formation by regulating star formation, driving interstellar turbulence and generating galactic scale outflows. Although modern simulations of galaxy formation can resolve scales of ∼ 10 − 100 pc, star formation and feedback operate on smaller, "subgrid" scales. Great care should therefore be taken in order to properly account for the effect of feedback on global galaxy evolution. We investigate the momentum and energy budget of feedback during different stages of stellar evolution, and study its impact on the interstellar medium using simulations of local star forming regions and galactic disks at the resolution affordable in modern cosmological zoom-in simulations. In particular, we present a novel subgrid model for the momentum injection due to radiation pressure and stellar winds from massive stars during early, pre-supernova evolutionary stages of young star clusters. This model is local and straightforward to implement in existing hydro codes without the need for radiative transfer. Early injection of momentum acts to clear out dense gas in star forming regions, hence limiting star formation. The reduced gas density mitigates radiative losses of thermal feedback energy from subsequent supernova explosions, leading to an increased overall efficiency of stellar feedback. The detailed impact of stellar feedback depends sensitively on the implementation and choice of parameters. Somewhat encouragingly, we find that implementations in which feedback is efficient lead to approximate self-regulation of global star formation efficiency. We compare simulation results using our feedback implementation to other phenomenological feedback methods, where thermal feedback energy is allowed to dissipate over time scales longer than the formal gas cooling time. We find that simulations with maximal momentum injection suppress star formation to a similar degree as is found in simulations adopting adiabatic thermal feedback. However, different feedback schemes are found to produce significant differences in the density and thermodynamic structure of the interstellar medium, and are hence expected to have a qualitatively different impact on galaxy evolution.
In a cold dark matter ( CDM) cosmology, the Milky Way accretes satellites into the stellar disc. We use cosmological simulations to assess the frequency of near disc plane and higher inclination accretion events, and collisionless simulations of satellite mergers to quantify the final state of the accreted material and the effect on the thin disc.On average, a Milky Way-sized galaxy has three subhaloes with v max > 80 km s −1 ; seven with v max > 60 km s −1 and 15 with v max > 40 km s −1 merge at redshift z 1. Assuming isotropic accretion, a third of these merge at an impact angle θ < 20 • and are dragged into the disc plane by dynamical friction. Their accreted stars and dark matter settle into a thick disc. The stellar thick disc qualitatively reproduces the observed thick disc at the solar neighbourhood, but is less massive by a factor ∼2 − 10. The dark matter disc contributes ρ DDISC = 0.25 − 1ρ HALO at the solar position. Although not likely to be dynamically interesting, the dark disc has important implications for the direct detection of dark matter because of its low velocity with respect to the Earth.Higher inclination encounters θ > 20 • are twice as likely as low-inclination ones. These lead to structures that closely resemble the recently discovered inner and outer stellar haloes. They also do more damage to the Milky Way stellar disc creating a more pronounced flare, and warp; both long-lived and consistent with current observations. The most massive mergers (v max 80 km s −1 ) heat the thin disc enough to produce a thick disc. These heated thin-disc stars are essential for obtaining a thick disc as massive as that seen in the Milky Way; they likely comprise some ∼50-90 per cent of the thick disc stars. The Milky Way thin disc must reform from fresh gas after z = 1.Only one in four of our sample Milky Way haloes experiences mergers massive and late enough to fully destroy the thin disc. We conclude that thick, thin and dark discs occur naturally within a CDM cosmology.
Standard formulations of smoothed particle hydrodynamics (SPH) are unable to resolve mixing at fluid boundaries. We use an error and stability analysis of the generalized SPH equations of motion to prove that this is due to two distinct problems. The first is a leading order error in the momentum equation. This should decrease with an increasing neighbour number, but does not because numerical instabilities cause the kernel to be irregularly sampled. We identify two important instabilities: the clumping instability and the banding instability, and we show that both are cured by a suitable choice of kernel. The second problem is the local mixing instability (LMI). This occurs as particles attempt to mix on the kernel scale, but are unable to due to entropy conservation. The result is a pressure discontinuity at boundaries that pushes fluids of different entropies apart. We cure the LMI by using a weighted density estimate that ensures that pressures are single-valued throughout the flow. This also gives a better volume estimate for the particles, reducing errors in the continuity and momentum equations. We demonstrate mixing in our new optimized smoothed particle hydrodynamics (OSPH) scheme using a Kelvin-Helmholtz instability (KHI) test with a density contrast of 1:2, and the 'blob test' -a 1:10 density ratio gas sphere in a wind tunnel -finding excellent agreement between OSPH and Eulerian codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.