Quantum ESPRESSO is an open-source distribution of computer codes for quantum-mechanical materials modeling, based on density-functional theory, pseudopotentials, and plane waves, and renowned for its performance on a wide range of hardware architectures, from laptops to massively parallel computers, as well as for the breadth of its applications. In this paper, we present a motivation and brief review of the ongoing effort to port Quantum ESPRESSO onto heterogeneous architectures based on hardware accelerators, which will overcome the energy constraints that are currently hindering the way toward exascale computing.
We report the complete X-ray crystallographic structure as determined through single-crystal X-ray diffraction and a thorough theoretical analysis of the green gold Au30(S-tBu)18.\ud While the structure of Au30S(S-tBu)18 with 19 sulfur atoms has been reported, the crystal structure of Au30(S-tBu)18 without the μ3-sulfur has remained elusive until now, though matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and electrospray ionization mass spectrometry (ESI-MS) data unequivocally show its presence in abundance. The Au30(S-tBu)18 nanomolecule not only is distinct in its crystal structure but also has unique temperature-dependent optical properties. Structure determination allows a rigorous comparison and an excellent agreement with theoretical predictions of structure, stability, and optical response
Articles you may be interested inA new algorithm to solve the Time Dependent Density Functional Theory (TDDFT) equations in the space of the density fitting auxiliary basis set has been developed and implemented. The method extracts the spectrum from the imaginary part of the polarizability at any given photon energy, avoiding the bottleneck of Davidson diagonalization. The original idea which made the present scheme very efficient consists in the simplification of the double sum over occupied-virtual pairs in the definition of the dielectric susceptibility, allowing an easy calculation of such matrix as a linear combination of constant matrices with photon energy dependent coefficients. The method has been applied to very different systems in nature and size (from H 2 to [Au 147 ] − ). In all cases, the maximum deviations found for the excitation energies with respect to the Amsterdam density functional code are below 0.2 eV. The new algorithm has the merit not only to calculate the spectrum at whichever photon energy but also to allow a deep analysis of the results, in terms of transition contribution maps, Jacob plasmon scaling factor, and induced density analysis, which have been all implemented. C 2015 AIP Publishing LLC. [http://dx
We apply a recently developed time-dependent density functional theory (TDDFT) algorithm based on the complex dynamical polarizability to calculate the photoabsorption spectrum of the following series of closed-shell icosahedral clusters of increasing size (namely, [M13]5+, [M55]3−, [M147]−, and [M309]3+ with M = Ag, Au), focusing in particular on their plasmonic response. The new method is shown to be computationally very efficient: it simultaneously retains information on the excited-state wave function and provides a detailed analysis of the optical resonances, e.g., by employing the transition contribution map scheme. For silver clusters, a very intense plasmon resonance is found for [Ag55]3−, with strong coupling among low-energy single-particle configurations. At variance, for gold clusters we do not find a single strong plasmonic peak but rather many features of comparable intensity, with partial plasmonic behavior present only for the lowest-energy transitions. Notably, we also find a much greater sensitivity of the optical response of Ag clusters with respect to Au clusters to cluster charge, the exchange-correlation (xc) functional, and the basis set, as demonstrated via a detailed comparison between [Ag55]q and [Au55]q. The results of the TDDFT algorithm obtained with the\ud complex dynamical polarizability are finally compared with those produced by alternative (real-time evolution or Lanczos) approaches, showing that, upon proper choice of numerical parameters, overall nearly quantitative agreement is achieved among all of the considered approaches, in keeping with their fundamental equivalence
Au(SR) is one of the most extensively investigated gold nanomolecules along with Au(SR) and Au(SR). However, so far it has only been prepared using aliphatic-like ligands, where R = -SCH, -SCH and -SCHCHPh. Au(SCHCHPh) when reacted with HSPh undergoes core-size conversion to Au(SPh), and existing literature suggests that Au(SPh) cannot be synthesized. Here, contrary to prevailing knowledge, we demonstrate that Au(SPh) can be prepared if the ligand exchanged conditions are optimized, under delicate conditions, without any formation of Au(SPh). Conclusive evidence is presented in the form of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), electrospray ionization mass spectra (ESI-MS) characterization, and optical spectra of Au(SPh) in a solid glass form showing distinct differences from that of Au(S-aliphatic). Theoretical analysis confirms experimental assignment of the optical spectrum and shows that the stability of Au(SPh) is not negligible with respect to that of its aliphatic analogous, and contains a significant component of ligand-ligand attractive interactions. Thus, while Au(SPh) is stable at RT, it converts to Au(SPh) either on prolonged etching (longer than 2 hours) at RT or when etched at 80 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.