Este artículo presenta el diseño y simulación de un controlador basado en redes neuronales para regular la tensión de salida de un convertidor flyback. Se usan redes neuronales, ya que estas no requieren de un modelo matemático del convertidor, y, por tanto, se obtiene un mayor rango de operación respecto a métodos de control tradicional. En el entrenamiento se realizan cambios en la base de datos y en la arquitectura para obtener el controlador más apropiado, que garantice la regulación de línea y carga del convertidor. La validación del controlador neuronal funcional se realiza en Simulink con el modelo circuital de un convertidor flyback, sometiéndolo a cambios en la tensión de entrada y en la carga resistiva. Los resultados obtenidos muestran la efectividad del control neuronal para la regulación de línea entre 20 V y 50 V, regulación de carga entre 8 Ω y 12 Ω, y cuya arquitectura está conformada por cuatro neuronas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.