Plants and their arbuscular mycorrhizal fungal symbionts interact in complex underground networks involving multiple partners. This increases the potential for exploitation and defection by individuals, raising the question of how partners maintain a fair, two-way transfer of resources. We manipulated cooperation in plants and fungal partners to show that plants can detect, discriminate, and reward the best fungal partners with more carbohydrates. In turn, their fungal partners enforce cooperation by increasing nutrient transfer only to those roots providing more carbohydrates. On the basis of these observations we conclude that, unlike many other mutualisms, the symbiont cannot be "enslaved." Rather, the mutualism is evolutionarily stable because control is bidirectional, and partners offering the best rate of exchange are rewarded.
Increasing concern about pollution of our environment calls for advanced and rapid methods to estimate ecological toxicity. The use of gene expression microarrays in environmental studies can potentially meet this challenge. We present a novel method to examine soil toxicity. We exposed the collembolan Folsomia candida to soil containing an ecologically relevant cadmium concentration, and found a cumulative total of 1586 differentially expressed transcripts across three exposure durations, including transcripts involved in stress response, detoxification, and hypoxia. Additional enrichment analysis of gene ontology (GO) terms revealed that antibiotic biosynthesis is important at all time points examined. Interestingly, genes involved in the "penicillin and cephalosporin biosynthesis pathway" have never been identified in animals before, but are expressed in F. candida's tissue. The synthesis of antibiotics can possibly be a response to increased cadmium-induced susceptibility to invading pathogens, which might be caused by repression of genes involved in the immune-system (C-type lectins and Toll receptor). This study presents a first global view on the environmental stress response of an arthropod species exposed to contaminated soil, and provides a mechanistic basis for the development of a gene expression soil quality test.
While the general direction of ecosystems' responses to a variety of climate change scenarios has been well investigated, insights in the potential amplitude and dynamics of this response are scarce and the societal impacts often remain unquantified. Drawing on the expertise of researchers from a variety of disciplines, this paper outlines how methodological and technological advancements can help design climate experiments that better capture the dynamics and amplitude of ecosystem responses provoked by climate change and translate these responses into societal impacts.
Temperature extremes are predicted to increase in frequency, intensity and duration under global warming and are believed to significantly affect community composition and functioning. However, the effect of extreme climatic events on communities remains difficult to predict, especially because species can show dissimilar responses to abiotic changes, which may affect the outcome of species interactions. To anticipate community responses we need knowledge on within and among species variation in stress tolerance. We exposed a soil arthropod community to experimental heat waves in the field and measured heat tolerance of species of different trophic levels from heated and control plots. We measured the critical thermal maximum (CTmax) of individuals to estimate inter- and intraspecific variation in heat tolerance in this community, and how this was affected by experimental heat waves. We found interspecific variation in heat tolerance, with the most abundant prey species, the springtail Isotoma riparia, being more sensitive to high temperatures than its predators (various spider species). Moreover, intraspecific variation in CTmax was substantial, suggesting that individuals within a single species were unequally affected by heat extremes. However, heat tolerance of species did not increase after being exposed to an experimental heat wave. We conclude that interspecific variation in tolerance traits potentially causes trophic mismatches during extreme events, but that intraspecific variation could lessen these effects by enabling partial survival of populations. Therefore, ecophysiological traits can provide a better understanding of abiotic effects on communities, not only within taxonomic or functional groups, but also when comparing different trophic levels.Electronic supplementary materialThe online version of this article (10.1007/s00442-017-4032-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.