Abstract. Low-cost particulate matter (PM) sensors have been under investigation as it has been hypothesized that the use of low-cost and easy-to-use sensors could allow cost-efficient extension of the currently sparse measurement coverage. While the majority of the existing literature highlights that low-cost sensors can indeed be a valuable addition to the list of commonly used measurement tools, it often reiterates that the risk of sensor misuse is still high and that the data obtained from the sensors are only representative of the specific site and its ambient conditions. This implies that there are underlying reasons for inaccuracies in sensor measurements that have yet to be characterized. The objective of this study is to investigate the particle-size selectivity of low-cost sensors. Evaluated sensors were Plantower PMS5003, Nova SDS011, Sensirion SPS30, Sharp GP2Y1010AU0F, Shinyei PPD42NS, and Omron B5W-LD0101. The investigation of size selectivity was carried out in the laboratory using a novel reference aerosol generation system capable of steadily producing monodisperse particles of different sizes (from ∼0.55 to 8.4 µm) on-line. The results of the study show that none of the low-cost sensors adhered to the detection ranges declared by the manufacturers; moreover, cursory comparison to a mid-cost aerosol size spectrometer (Grimm 1.108, 2020) indicates that the sensors can only achieve independent responses for one or two size bins, whereas the spectrometer can sufficiently characterize particles with 15 different size bins. These observations provide insight into and evidence of the notion that particle-size selectivity has an essential role in the analysis of the sources of errors in sensors.
Despite women earning similar numbers of graduate degrees as men in STEM disciplines, they are underrepresented in upper level positions in both academia and industry. Editorial board memberships are an important example of such positions; membership is both a professional honor in recognition of achievement and an opportunity for professional advancement. We surveyed 10 highly regarded journals in environmental biology, natural resource management, and plant sciences to quantify the number of women on their editorial boards and in positions of editorial leadership (i.e., Associate Editors and Editors-in-Chief) from 1985 to 2013. We found that during this time period only 16% of subject editors were women, with more pronounced disparities in positions of editorial leadership. Although the trend was towards improvement over time, there was surprising variation between journals, including those with similar disciplinary foci. While demographic changes in academia may reduce these disparities over time, we argue journals should proactively strive for gender parity on their editorial boards. This will both increase the number of women afforded the opportunities and benefits that accompany board membership and increase the number of role models and potential mentors for early-career scientists and students.
The X-Ray Spectrometer (XRS) has been designed to provide the Suzaku Observatory with non-dispersive, high-resolution X-ray spectroscopy. As designed, the instrument covers the energy range 0.3 to 12 keV, which encompasses the most diagnostically rich part of the X-ray band. The sensor consists of a 32-channel array of X-ray microcalorimeters, each with an energy resolution of about 6 eV. The very low temperature required for operation of the array (60 mK) is provided by a four-stage cooling system containing a single-stage adiabatic demagnetization refrigerator, a superfluid-helium cryostat, a solid-neon dewar, and a single-stage, Stirling-cycle cooler. The Suzaku/XRS is the first orbiting X-ray microcalorimeter spectrometer and was designed to last more than three years in orbit. The early verification phase of the mission demonstrated that the instrument worked properly and that the cryogen consumption rate was low enough to ensure a mission lifetime exceeding 3 years. However, the liquid-He cryogen was completely vaporized two weeks after opening the dewar guard vacuum vent. The problem has been traced to inadequate venting of the dewar He and Ne gases out of the spacecraft and into space. In this paper we present the design and ground testing of the XRS instrument, and then describe the in-flight performance. An energy resolution of 6 eV was achieved during pre-launch tests and a resolution of 7 eV was obtained in orbit. The slight degradation is due to the effects of cosmic rays.
Biological constraints and neutral processes have been proposed to explain the properties of plant–pollinator networks. Using interactions between nectarivorous birds (hummingbirds and flowerpiercers) and flowering plants in high elevation forests (i.e., “elfin” forests) of the Andes, we explore the importance of biological constraints and neutral processes (random interactions) to explain the observed species interactions and network metrics, such as connectance, specialization, nestedness and asymmetry. In cold environments of elfin forests, which are located at the top of the tropical montane forest zone, many plants are adapted for pollination by birds, making this an ideal system to study plant–pollinator networks. To build the network of interactions between birds and plants, we used direct field observations. We measured abundance of birds using mist-nets and flower abundance using transects, and phenology by scoring presence of birds and flowers over time. We compared the length of birds’ bills to flower length to identify “forbidden interactions”—those interactions that could not result in legitimate floral visits based on mis-match in morphology. Diglossa flowerpiercers, which are characterized as “illegitimate” flower visitors, were relatively abundant. We found that the elfin forest network was nested with phenology being the factor that best explained interaction frequencies and nestedness, providing support for biological constraints hypothesis. We did not find morphological constraints to be important in explaining observed interaction frequencies and network metrics. Other network metrics (connectance, evenness and asymmetry), however, were better predicted by abundance (neutral process) models. Flowerpiercers, which cut holes and access flowers at their base and, consequently, facilitate nectar access for other hummingbirds, explain why morphological mis-matches were relatively unimportant in this system. Future work should focus on how changes in abundance and phenology, likely results of climate change and habitat fragmentation, and the role of nectar robbers impact ecological and evolutionary dynamics of plant–pollinator (or flower-visitor) interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.