Two new classes of robust estimates for ARMA models are introduced: estimates based on residual autocovariances (RA estimates), and estimates based on truncated residual autocovariances (TRA estimates). A heuristic derivation of the asymptotic normal distribution is given. We also perform a Monte Carlo study to compare the robustness properties of these estimates with the least squares, M , and GM estimates. In this study we consider observations that correspond to a Gaussian model with additive outliers. The Monte Carlo results show that RA and TRA estimates compare favorably with respect to least squares, M , and GM estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.