BackgroundCurrently, genomic prediction in cattle is largely based on panels of about 54k single nucleotide polymorphisms (SNPs). However with the decreasing costs of and current advances in next-generation sequencing technologies, whole-genome sequence (WGS) data on large numbers of individuals is within reach. Availability of such data provides new opportunities for genomic selection, which need to be explored.MethodsThis simulation study investigated how much predictive ability is gained by using WGS data under scenarios with QTL (quantitative trait loci) densities ranging from 45 to 132 QTL/Morgan and heritabilities ranging from 0.07 to 0.30, compared to different SNP densities, with emphasis on divergent dairy cattle breeds with small populations. The relative performances of best linear unbiased prediction (SNP-BLUP) and of a variable selection method with a mixture of two normal distributions (MixP) were also evaluated. Genomic predictions were based on within-population, across-population, and multi-breed reference populations.ResultsThe use of WGS data for within-population predictions resulted in small to large increases in accuracy for low to moderately heritable traits. Depending on heritability of the trait, and on SNP and QTL densities, accuracy increased by up to 31 %. The advantage of WGS data was more pronounced (7 to 92 % increase in accuracy depending on trait heritability, SNP and QTL densities, and time of divergence between populations) with a combined reference population and when using MixP. While MixP outperformed SNP-BLUP at 45 QTL/Morgan, SNP-BLUP was as good as MixP when QTL density increased to 132 QTL/Morgan.ConclusionsOur results show that, genomic predictions in numerically small cattle populations would benefit from a combination of WGS data, a multi-breed reference population, and a variable selection method.
BackgroundThe rapid adoption of genomic selection is due to two key factors: availability of both high-throughput dense genotyping and statistical methods to estimate and predict breeding values. The development of such methods is still ongoing and, so far, there is no consensus on the best approach. Currently, the linear and non-linear methods for genomic prediction (GP) are treated as distinct approaches. The aim of this study was to evaluate the implementation of an iterative method (called GBC) that incorporates aspects of both linear [genomic-best linear unbiased prediction (G-BLUP)] and non-linear (Bayes-C) methods for GP. The iterative nature of GBC makes it less computationally demanding similar to other non-Markov chain Monte Carlo (MCMC) approaches. However, as a Bayesian method, GBC differs from both MCMC- and non-MCMC-based methods by combining some aspects of G-BLUP and Bayes-C methods for GP. Its relative performance was compared to those of G-BLUP and Bayes-C.MethodsWe used an imputed 50 K single-nucleotide polymorphism (SNP) dataset based on the Illumina Bovine50K BeadChip, which included 48,249 SNPs and 3244 records. Daughter yield deviations for somatic cell count, fat yield, milk yield, and protein yield were used as response variables.ResultsGBC was frequently (marginally) superior to G-BLUP and Bayes-C in terms of prediction accuracy and was significantly better than G-BLUP only for fat yield. On average across the four traits, GBC yielded a 0.009 and 0.006 increase in prediction accuracy over G-BLUP and Bayes-C, respectively. Computationally, GBC was very much faster than Bayes-C and similar to G-BLUP.ConclusionsOur results show that incorporating some aspects of G-BLUP and Bayes-C in a single model can improve accuracy of GP over the commonly used method: G-BLUP. Generally, GBC did not statistically perform better than G-BLUP and Bayes-C, probably due to the close relationships between reference and validation individuals. Nevertheless, it is a flexible tool, in the sense, that it simultaneously incorporates some aspects of linear and non-linear models for GP, thereby exploiting family relationships while also accounting for linkage disequilibrium between SNPs and genes with large effects. The application of GBC in GP merits further exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.