This document presents a machine learning model development as a tool to improve chemical dosing procedure in ariari regional aqueduct (ARA). The supervised learning model has been addressed starting from the knowledge of data color, turbidity and pH at the water inlet to the aqueduct and the dosing results of type A aluminum sulfate and calcium oxide (lime) obtained through jar tests. The construction of the automatic learning model had a comprehensive implementation and improvement field through continuous system training, which allowed an optimal dosage of Aluminum Sulfate and Lime to generate an outlet pH less than 7.5 and outlet turbidity less than 8 nephelometric turbidity unit (NTU). Those outlet water parameters meet the ministry of social protection criteria in Colombia. Also, a virtual jar test was created to reduce the time required to obtain chemical dosing values to less than a minute. In contrast, a laboratory test takes approximately a half-hour to displays results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.