In this work, dissipative effects from a phonon bath on the resonance fluorescence of a solid-state two level system embedded in a high quality semiconductor microcavity and driven by an intense laser, are investigated. Within the density operator formalism, we derive a variational master equation valid for broader ranges of temperatures, pumping rates, and radiation-matter couplings, than previous studies. From the obtained master equation, fluorescence spectra for various thermal and exciting conditions are numerically calculated, and compared to those computed from weak coupling and polaronic master equations, respectively. Our results evidence the breakdown of those rougher approaches under increased temperature and strong pumping. arXiv:1611.05532v3 [cond-mat.mes-hall]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.