A series of (NHC)Pd(R-allyl)Cl complexes [NHC: IPr = N,N'-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, SIPr = N,N'-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene; R = H, Me, gem-Me2, Ph] have been synthesized and fully characterized. When compared to (NHC)Pd(allyl)Cl, substitution at the terminal position of the allyl scaffold favors a more facile activation step. This translates into higher catalytic activity in the Suzuki-Miyaura and Buchwald-Hartwig reactions, allowing for the coupling of unactivated aryl chlorides at room temperature in minutes. In the Suzuki-Miyaura reaction, aryl triflates, bromides, and chlorides react with boronic acids using very low catalyst loading. In the N-aryl amination reaction, a wide range of substrates has been coupled efficiently; primary-, secondary-, alkyl-, or aryl-amines react in high yields with unactivated, neutral, and activated aryl chlorides and bromides. In both reactions, extremely hindered substrates such as tri-ortho-substituted biaryls and tetra-ortho-substituted diarylamines can be produced without loss of activity. Finally, the present catalytic system has proven to be efficient with as low as 10 parts-per-million (ppm) of precatalyst in the Buchwald-Hartwig reaction and 50 ppm in the Suzuki-Miyaura reaction.
Mononuclear palladium-allyl complexes bearing one N-heterocyclic carbene (NHC) ligand have been synthesized. These complexes offer a straightforward entryway into a number of catalytic cycles by simple action of a base.
The synthesis and structural characterization of a series of palladium complexes bearing
N-heterocyclic carbenes (NHC) as supporting ligands are described. The reaction of
commercially available [Pd(allyl)Cl]2 and isolated or in situ generated NHC leads to
monomeric palladium complexes where one NHC is bound to the metal center, as indicated
by spectroscopic and single-crystal X-ray diffraction studies. The relative reactivity trend
for these complexes as catalysts in aryl amination is discussed in terms of ligand steric
properties, which vary as a function of imidazole-nitrogen substituents and perturbation
resulting in modulation of ring planarity. The concept of buried volume is used to quantify
the steric demand of each NHC in the corresponding complexes.
The catalytic formation of di- and trisubstituted ortho biaryl junctions has been achieved using a palladacylce pre-catalyst bearing a N-heterocyclic carbene ligand. This transformation is performed at room temperature in technical grade 2-propanol.
A series of well-defined, air- and moisture-stable (NHC)Pd(allyl)Cl (NHC = N-heterocyclic carbene) complexes has been used in several catalytic reactions: Suzuki-Miyaura cross-coupling, catalytic dehalogenation of aryl halides, and aryl amination. The scope of the three processes using various substrates was examined. A general system involving the use of (IPr)Pd(allyl)Cl as catalyst and NaO(t)Bu as base has proven to be highly active for the Suzuki-Miyaura cross-coupling of activated and unactivated aryl chlorides and bromides, for the catalytic dehalogenation of aryl chlorides, and for the catalytic aryl amination of aryl triflates. All reactions proceed in short reaction times and at mild temperatures. The system has also proven to be compatible with the microwave-assisted Suzuki-Miyaura cross-coupling and catalytic dehalogenation processes, affording yields similar to those of the conventionally heated analogous reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.