Protein kinases regulate the majority of signal transduction pathways in cells and have become important targets for the development of designer drugs. We present a systematic analysis of kinase-ligand interactions in all regions of the catalytic cleft of all 1252 human kinase-ligand cocrystal structures present in the Protein Data Bank (PDB). The kinase-ligand interaction fingerprints and structure database (KLIFS) contains a consistent alignment of 85 kinase ligand binding site residues that enables the identification of family specific interaction features and classification of ligands according to their binding modes. We illustrate how systematic mining of kinase-ligand interaction space gives new insights into how conserved and selective kinase interaction hot spots can accommodate the large diversity of chemical scaffolds in kinase ligands. These analyses lead to an improved understanding of the structural requirements of kinase binding that will be useful in ligand discovery and design studies.
Protein kinases play a crucial role in cell signaling and are important drug targets in several therapeutic areas. The KLIFS database contains detailed structural kinase-ligand interaction information derived from all (>2900) structures of catalytic domains of human and mouse protein kinases deposited in the Protein Data Bank in order to provide insights into the structural determinants of kinase-ligand binding and selectivity. The kinase structures have been processed in a consistent manner by systematically analyzing the structural features and molecular interaction fingerprints (IFPs) of a predefined set of 85 binding site residues with bound ligands. KLIFS has been completely rebuilt and extended (>65% more structures) since its first release as a data set, including: novel automated annotation methods for (i) the assessment of ligand-targeted subpockets and the analysis of (ii) DFG and (iii) αC-helix conformations; improved and automated protocols for (iv) the generation of sequence/structure alignments, (v) the curation of ligand atom and bond typing for accurate IFP analysis and (vi) weekly database updates. KLIFS is now accessible via a website (http://klifs.vu-compmedchem.nl) that provides a comprehensive visual presentation of different types of chemical, biological and structural chemogenomics data, and allows the user to easily access, compare, search and download the data.
Hydroxy-aryl-5,6,7,8-tetrahydroisoquinoline-4-carbonitriles represent interesting chemical scaffolds, but synthetic access to these compounds is limited. The reaction of 2-aroyl-cyclohexanones with 2-cyanoacetamide and base in ethanol has been reported to lead to the formation of the tetrahydroisoquinoline isomer. We show that depending on the electronic nature of the para-substituent on the aryl ring, formation of the regioisomeric tetrahydroquinoline isomer can significantly compete. The electron-donating or -withdrawing properties of the para-substituent of the aryl ring determines the ratio of product isomers. A series of 2-aroyl-cyclohexanones, with para-substituents ranging from electron-donating to electron-withdrawing, were reacted with [2-(13)C]-cyanoacetamide. The product ratio and absolute regiochemistry were directly determined by quantitative (13)C, HMBC, and NOESY NMR spectroscopy on the reaction mixtures. A clear relationship between the regioisomeric product ratio and the Hammett sigma values of the substituents is demonstrated. This is explained by the separate in situ yields, which reveal that the pathway leading to the tetrahydroquinoline regioisomer is significantly more sensitive toward the electronic nature of the para-substituent than the pathway leading to the tetrahydroisoquinoline. Semiempirical AM1 molecular orbital calculations on the starting electrophile 2-aroyl-cyclohexanone support a correlation between the energy of the LUMOs and the regioisomeric product ratio. Our results facilitate synthetic access to a range of these interesting synthetic intermediates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.