In astronomical surveys, such as the Zwicky Transient Facility, supernovae (SNe) are relatively uncommon objects compared to other classes of variable events. Along with this scarcity, the processing of multiband light curves is a challenging task due to the highly irregular cadence, long time gaps, missing values, few observations, etc. These issues are particularly detrimental to the analysis of transient events: SN-like light curves. We offer three main contributions: (1) Based on temporal modulation and attention mechanisms, we propose a deep attention model (TimeModAttn) to classify multiband light curves of different SN types, avoiding photometric or hand-crafted feature computations, missing-value assumptions, and explicit imputation/interpolation methods. (2) We propose a model for the synthetic generation of SN multiband light curves based on the Supernova Parametric Model, allowing us to increase the number of samples and the diversity of cadence. Thus, the TimeModAttn model is first pretrained using synthetic light curves. Then, a fine-tuning process is performed. The TimeModAttn model outperformed other deep learning models, based on recurrent neural networks, in two scenarios: late-classification and early-classification. Also, the TimeModAttn model outperformed a Balanced Random Forest (BRF) classifier (trained with real data), increasing the balanced-F 1score from ≈.525 to ≈.596. When training the BRF with synthetic data, this model achieved a similar performance to the TimeModAttn model proposed while still maintaining extra advantages. (3) We conducted interpretability experiments. High attention scores were obtained for observations earlier than and close to the SN brightness peaks. This also correlated with an early highly variability of the learned temporal modulation.
In astronomical surveys, such as the Zwicky Transient Facility (ZTF), supernovae (SNe) are relatively uncommon objects compared to other classes of variable events. Along with this scarcity, the processing of multi-band light-curves is a challenging task due to the highly irregular cadence, long time gaps, missing-values, low number of observations, etc. These issues are particularly detrimental for the analysis of transient events with SN-like light-curves. In this work, we offer three main contributions. First, based on temporal modulation and attention mechanisms, we propose a Deep Attention model called TimeModAttn to classify multi-band light-curves of different SN types, avoiding photometric or hand-crafted feature computations, missing-values assumptions, and explicit imputation and interpolation methods. Second, we propose a model for the synthetic generation of SN multi-band light-curves based on the Supernova Parametric Model (SPM). This allows us to increase the number of samples and the diversity of the cadence. The TimeModAttn model is first pre-trained using synthetic light-curves in a semi-supervised learning scheme. Then, a fine-tuning process is performed for domain adaptation. The proposed TimeModAttn model outperformed a Random Forest classifier, increasing the balanced-F 1 score from ≈ .525 to ≈ .596. The TimeModAttn model also outperformed other Deep Learning models, based on Recurrent Neural Networks (RNNs), in two scenarios: late-classification and early-classification. Finally, we conduct interpretability experiments. High attention scores are obtained for observations earlier than and close to the SN brightness peaks, which are supported by an early and highly expressive learned temporal modulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.