This paper describes the Multi-Genre Broadcast (MGB) Challenge at ASRU 2015, an evaluation focused on speech recognition, speaker diarization, and "lightly supervised" alignment of BBC TV recordings. The challenge training data covered the whole range of seven weeks BBC TV output across four channels, resulting in about 1,600 hours of broadcast audio. In addition several hundred million words of BBC subtitle text was provided for language modelling. A novel aspect of the evaluation was the exploration of speech recognition and speaker diarization in a longitudinal setting -i.e. recognition of several episodes of the same show, and speaker diarization across these episodes, linking speakers. The longitudinal tasks also offered the opportunity for systems to make use of supplied metadata including show title, genre tag, and date/time of transmission. This paper describes the task data and evaluation process used in the MGB challenge, and summarises the results obtained.
Recurrent neural network language models (RNNLMs) have consistently outperformed n-gram language models when used in automatic speech recognition (ASR). This is because RNNLMs provide robust parameter estimation through the use of a continuous-space representation of words, and can generally model longer context dependencies than n-grams. The adaptation of RNNLMs to new domains remains an active research area and the two main approaches are: feature-based adaptation, where the input to the RNNLM is augmented with auxiliary features; and model-based adaptation, which includes model fine-tuning and introduction of adaptation layer(s) in the network. This paper explores the properties of both types of adaptation on multi-genre broadcast speech recognition. Two hybrid adaptation techniques are proposed, namely the finetuning of feature-based RNNLMs and the use of a feature-based adaptation layer. A method for the semi-supervised adaptation of RNNLMs, using topic model-based genre classification, is also presented and investigated. The gains obtained with RNNLM adaptation on a system trained on 700h. of speech are consistent using both RNNLMs trained on a small (10M words) and large set (660M words), with 10% perplexity and 2% word error rate improvements on a 28.3h. test set.
We describe the University of Sheffield system for participation in the 2015 Multi-Genre Broadcast (MGB) challenge task of transcribing multi-genre broadcast shows. Transcription was one of four tasks proposed in the MGB challenge, with the aim of advancing the state of the art of automatic speech recognition, speaker diarisation and automatic alignment of subtitles for broadcast media. Four topics are investigated in this work: Data selection techniques for training with unreliable data, automatic speech segmentation of broadcast media shows, acoustic modelling and adaptation in highly variable environments, and language modelling of multigenre shows. The final system operates in multiple passes, using an initial unadapted decoding stage to refine segmentation, followed by three adapted passes: a hybrid DNN pass with input features normalised by speaker-based cepstral normalisation, another hybrid stage with input features normalised by speaker feature-MLLR transformations, and finally a bottleneck-based tandem stage with noise and speaker factorisation. The combination of these three system outputs provides a final error rate of 27.5% on the official development set, consisting of 47 multi-genre shows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.