Small-footprint mobile ground robots, such as the popular Turtlebot and Kobuki platforms, are by necessity equipped with sensors which lie close to the ground. Reliably detecting and tracking people from this viewpoint is a challenging problem, whose solution is a key requirement for many applications involving sharing of common spaces and close human-robot interaction. We present a robust solution for cluttered indoor environments, using an inexpensive RGB-D sensor such as the Microsoft Kinect or Asus Xtion. Even in challenging scenarios with multiple people in view at once and occluding each other, our system solves the person detection problem significantly better than alternative approaches, reaching a precision, recall and F1-score of 0.85, 0.81 and 0.83, respectively. Evaluation datasets, a real-time ROS-enabled implementation and demonstration videos are provided as supplementary material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.