Symptoms of forest decline, apparently due to climate change, have become evident in the last 10 years on the Trans-Mexican Volcanic Belt and northwestern temperate forest of Mexico, particularly at the xeric (low elevational) limit of several forest tree species. We review and provide recent evidence of massive infestation of timberline Pinus hartwegii Lindl. by the mistletoes Arceuthobium globosum Hawksw. & Wiens and Arceuthobium vaginatum (Humb. & Bonpl. ex Willd.) J.Presl; insufficient Abies religiosa (Kunth) Schltdl. & Cham. seedling recruitment at the Monarch Butterfly Biosphere Reserve; indications of inbreeding and defoliation in endangered Picea chihuahuana Martínez, Picea martinezii T.F. Patt., Picea mexicana Martínez, and extreme southern populations of Pseudotsuga menziesii (Mirb.) Franco; and the incidence of unusual pest and disease outbreaks (e.g., Dendroctonus Erichson, 1836 spp., Neodiprion autumnalis Smith, and Phytophthora cinnamomi Rands) in several conifer and oak species. We also discuss a difficult question: Is natural genetic variation sufficient to provide populations with the adaptive variation necessary to survive the natural selection imposed by projected climate change scenarios, or will phenotypic plasticity be exhausted and populations decline? Controversial ex situ conservation within natural protected areas, assisted migration, and translocation of species ensembles are discussed as options by which to accommodate projected climatic change impacts on the management and conservation practices of the megadiverse Mexican temperate forest.
Bark beetle infestations have historically been primary drivers of stand thinning in Mexican pine forests. However, bark beetle impacts have become increasingly extensive and intense, apparently associated with climate change. Our objective was to describe the possible association between abundance of bark beetle flying populations and the occurrence of given value intervals of temperature, precipitation and their balance, in order to have a better comprehension of the climatic space that might trigger larger insect abundances, an issue relevant in the context of the ongoing climatic change. Here, we monitored the abundance of two of the most important bark beetle species in Mexico, Dendroctonus frontalis and D. mexicanus. We sampled 147 sites using pheromone-baited funnel traps along 24 altitudinal transects in 11 Mexican states, from northwestern Chihuahua to southeastern Chiapas, from 2015 to 2017. Through mixed model analysis, we found that the optimum Mean Annual Temperatures were 17°C–20°C for D. frontalis in low-elevation pine-oak forest, while D. mexicanus had two optimal intervals: 11–13°C and 15–18°C. Higher atmospheric Vapor Pressure Deficit (≥ 1.0) was correlated with higher D. frontalis abundances, indicating that warming-amplified drought stress intensifies trees’ vulnerability to beetle attack. As temperatures and drought stress increase further with projected future climatic changes, it is likely that these Dendroctonus species will increase tree damage at higher elevations. Pine forests in Mexico are an important source of livelihood for communities inhabiting those areas, so providing tools to tackle obstacles to forest growth and health posed by changing climate is imperative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.