This paper analyzes stock price behaviour on Ghana Stock Exchange (GSE) and develops a stochastic model to predict the behaviour of stock prices on the exchange using Monte Carlo simulations. The first part looks at the various justifications and models that have been put forward to explain stock behaviour and its distribution elsewhere. It traces the foundations of the use of stochastic process as a means of predicting stock price behaviour from Louis Bachelier normality assumption to the works of Samuelson's lognormal supposition through to the doctoral thesis of Fama French in which he premised the behaviour of stock price to the idea of a random walk. We subsequently apply the Geometric Brownian Motion formulation to simulate stock price behaviour for all listed stocks on the GSE for the coming year (2015) using historical volatility and mean returns of the previous year (2014). The results find increasing evidence that the stochastic model consistently predict the stock price behaviour on the exchange in more than 80% of the listed stocks.
The behaviour of stocks on the Ghana stock exchange is examined to show that stock prices on the exchange are subject to sudden price changes. It is shown that such unexpected events and uncertainties affecting trading on the exchange cannot be modeled solely by the conventional geometric Brownian motion outlined in the Black-Scholes model. A new concise and simpler approach is developed to derive the Jump diffusion model and consequently, its suitability to model stocks on the exchange is emphasized and given rigorous treatment. The model is subsequently used to predict the behaviour of stocks using historical stock prices as input parameters. The simulated stock returns are compared to actual returns to determine the model's suitability to predict the market. The results show that the jump diffusion model is appropriate in predicting the behaviour of approximately 25% percent of stocks listed on the exchange.
We propose a stochastic process modelling of covid-19 deaths in Ghana. The objective is to accurately capture the death processes resulting from the pandemic and to predict future deaths resulting from Covid-19 infections in Ghana. The mathematical derivation is based strictly on the compound Poisson process, a class of a Levy process. The model is verified by using empirical data of deaths resulting from Covid-19 from the onset of the pandemic up to the time of writing this report. That is, Covid-19 deaths in Ghana from March to August 2020. The method departs slightly from the usual differential equations used in modeling pandemics due to the unique occurrence of deaths from the disease in Ghana. As the methods are basically compound Poisson process, we delve into Levy processes as it allows us to effectively simulate the future behaviour of the death process. To test the effectiveness of the model, we compared the simulated results to the actual reported number of deaths from Covid-19 cases in Ghana from March to August 2020. The results show that at a 95% confidence interval there is no significant difference between the actual deaths and the simulated results. The results of the simulation, when extended to February 2021 (one year after the advent of the pandemic) shows that if the current conditions remain same, that is, if there is no immediate intervention by the discovery of an effective drug or a vaccine, then the number of deaths could reach four hundred and forty six (446) by February 28, 2020.
We present a succinct new approach to derive the Black-Scholes partial differential equation and subsequently the Black-Scholes formula. We proceed to use the formula to price options using stocks listed on Ghana stock exchange as underlying assets. From one year historical stock prices we obtain volatilities of the listed stocks which are subsequently used to compute prices of three month European call option. The results indicate that it is possible to use the Black Scholes formula to price options on the stocks listed on exchange. However, it was realised that most call option prices tend to zero either due to very low volatilities or very low stock prices. On the other hand put options were found to give positive prices even for stocks with very low volatilities or low stock prices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.