A major challenge in drug delivery is the internalization through the apical plasma membrane of the polarized epithelial cells lining organs facing the external environment, e.g., lungs and the gastrointestinal tract. The reduced permeation of drugs entering through this pathway is in part due to the mucosal barrier and low rate of endocytosis at these membranes. We investigated the possible role of nanoparticle surface charge on its entry through the apical plasma membrane and its intracellular pathway. We found that both cationic and anionic nanoparticles are targeted mainly to the clathrin endocytic machinery. A fraction of both nanoparticle formulations is suspected to internalize through a macropinocytosis-dependent pathway. A significant amount of nanoparticles transcytose and accumulate at the basolateral membrane. Some anionic but not cationic nanoparticles transited through the degradative lysosomal pathway. Taken together, these observations indicate that cationic nanoparticles, in addition to their potential for drug delivery to epithelia, may be promising carriers for transcytosing drugs to the blood stream.
Design strategies to enhance drug delivery at specific cellular organelle by taking advantage of the endocytotic pathways are still in the early stages of development. This review provides a summary of the endocytosis machineries and pathways, as well as their involvement in nanoparticle internalization processes into either polarized epithelial cells or nonpolarized cells, in view of the marked differences in endocytic processes occurring within those cell types. The relevance of the physicochemical properties of nanoparticles upon their entry into the cells, as well as the experimental tools used to investigate the entry of nanoparticles into cells, is also addressed. The objective of this review is to present current information and achievements for a more in-depth comprehension of the internalization process and intracellular trafficking of nanoparticulate drug delivery systems within various cells types.
Docetaxel, an efficient chemotherapeutic drug, exhibits low and variable oral bioavailability due to the active efflux by P-glycoprotein (P-gp) and more so to CYP3A4 gut metabolism. Using a spray-drying technique, docetaxel was incorporated in PLGA [poly(lactic-co-glycolic acid)] nanocapsules (NC) which were embedded in entero-coated microparticles. An oral administration of the NC formulation elicited a higher absolute bioavailability than both a docetaxel solution (276%) and a free docetaxel NC formulation (400%) injected intravenously, a 5-mg/kg dose. The batches (B) I and II NC formulations elicited C max values that were 1,735% and 2,254%, respectively; higher than the C max value of the oral docetaxel solution combined with blank microparticles, a 10-mg/kg dose. No significant difference in AUC (area under curve) was observed between the batches. These unexpected results can be explained only if the pharmacokinetics of docetaxel had been modified. It was shown that NCs released from the microparticles penetrated the enterocytes, bypassing P-gp; apparently circumventing gut metabolism and accumulating within the lymphatic system from where both intact or biodegraded NCs and free docetaxel were progressively released into the circulation as plausibly supported by the fluorescent imaging results. Furthermore, the circulating docetaxel in plasma was unencapsulated and circulated either in free form or bound to albumin. Both free docetaxel NCs and microparticles exhibited in vitro efficacy on WRC 256 cells suggesting that the activity of docetaxel was not altered. This delivery concept has potential for clinical translation, perhaps allowing docetaxel chemotherapy to be switched from intravenous to oral delivery. Cancer Res; 71(8); 3018-28. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.