The effect of different mechanical and chemical pre-treatments on the adhesion strength of hydroxyapatite (HAp) coating on a commercially pure titanium (CP-Ti) substrate was studied by means of a standard tensile test followed by microscopic and chemical analysis to determine the locus of fracture. In addition, the effects of either these pre-treatments or post-treatment by low-energy electron irradiation, which allowed tuning the wettability of the surface, on both osteoblast progenitor attachment and S. aureus bacteria attachment were investigated. A dedicated program was developed for unambiguous identification and count of stained cells. A single-phase HAp coating was formed by electrodeposition. A series of surface pre-treatments consisted of grinding down to P1000, etching in HNO₃/HF solution, grit blast, soaking in NaOH and subsequent heat treatment provided the highest adhesion strength to the HAp coating. Osteoblast progenitors derived from rats may be attached preferentially to a hydrophilic surface (post-treatment to θ = 30°), while the bacteria seemed to be less attached to hydrophobic surfaces (post-treatment to θ = 105°). However, the results were not statistically different. The bacteria seemed to be less attached to the smoother, uncoated surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.