Mining is one of the principal economic activities in Mexico, which in addition to bringing benefits to the population, causes health and environmental problems. This activity produces many wastes, but the main is tailings. In Mexico, these wastes are disposed of in the open air, and there is no control over them, so the particles of these wastes are dispersed by wind currents to the surrounding population. In this research, tailings were characterized, being these particles smaller than 100 microns; in this way, tailings can enter the respiratory system and thence can cause diseases. Therefore, it is important to characterize these particles and identify the toxic components. The present work shows a qualitative characterization of the tailings from an active mine in Mexico using different analytical techniques. In addition, with the data obtained from the characterization of the tailings, as well as the concentration of the toxic elements found, which were Pb and As, a dispersal model was generated that was used to estimate the concentration of particles in the wind generated by the area study. Environmental Protection Agency (EPA) emission factors were used in the model. The air quality model used in this research is AERMOD, where available databases were used; in addition, the model was coupled with meteorological information from the latest generation WRF model. The modeling results estimated that the dispersion of particles from the tailings dam can contribute up to 10.15 µg/m3 of PM10 to the air quality of the site, which, according to the characterization of the samples obtained, could be dangerous for human health and can be estimated up to a concentration of 0.04 µg/m3 of Pb and 10.90 ng/m3 of As.
En el presente trabajo se evalúa la sensibilidad de la base de datos meteorológicos generadas por el sistema de modelización meteorológico WRF, extrayendo los valores representativos para un sitio empleando el modelo MMIF. La estación meteorológica seleccionada de referencia (Villa de las Flores) es administrada por el Sistema de Monitoreo Atmosférico de la Ciudad de México, y está ubicada en el municipio de Coacalco. Para determinar la sensibilidad se analizó cualitativamente el comportamiento de los datos en una serie de tiempo a diferentes escalas, mientras que el análisis cuantitativo se efectuó utilizando los siguientes estadísticos: el error cuadrático medio (RMSE), el error absoluto medio normalizado (NMAE) (NMB), el sesgo (BIAS), coeficiente de correlación de Pearson (r) y el índice de ajuste (IOA). Se evaluó la temperatura, la humedad relativa, la velocidad y dirección del viento, dando como resultado que las tres primeras variables tienen un índice bueno de concordancia. No obstante, hubo diferencias cualitativas, pero no significativas en la dirección de viento, se infiere que puede ser producto de la escala utilizada en la modelización en el WRF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.