Aircraft maintenance is an expansive multidisciplinary field which entails robust design and optimization of extensive maintenance operations and procedures; encompassing the fault identification, detection and rectification, and overhauling, repair or modification of aircraft systems, subsystems, and components, as well as the scheduling for various maintenance operations, in compliance with the aviation standards; in order to predict, pre-empt and prevent failures and thus ensure the continual reliability of aircraft. Advances in Big Data Analytics (BDA) and artificial intelligence techniques have revolutionized predictive maintenance operations. Predictive maintenance is making big strides in the aerospace sector accompanied by a variety of prognostic health management options. Artificial intelligence algorithms have recently been extensively applied to optimize aircraft maintenance systems and operations. Several researchers have proposed, analysed, and investigated the applications of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) based data analytics for predictive maintenance of aircraft systems, subsystems, and components. This paper provides a comprehensive review of the ML techniques like Multilayer Perceptron (MLP), Logic Regression (LR), Random Forest (RF), Artificial Neural Network (ANN), Support Vector Regression (SVR), Linear Regression (LR), and other common ML techniques for their present implementation and potential future applications in aircraft maintenance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.