Although the benefits of intercooling for aero engine applications have been realized and discussed in many publications, quantitative details are still relatively limited. In order to strengthen the understanding of aero engine intercooling, detailed performance data on optimized intercooled turbofan engines are provided. Analysis is conducted using an exergy breakdown, i.e. quantifying the losses into a common currency by applying a combined use of the first and second law of thermodynamics. Optimal intercooled geared turbofan engines for a long range mission are established with CFD based two-pass cross flow tubular intercooler correlations. By means of a separate variable nozzle, the amount of intercooler coolant air can be optimized to different flight conditions. Exergy analysis is used to assess how irreversibility is varying over the flight mission, allowing for a more clear explanation and interpretation of the benefits. The optimal intercooled geared turbofan engine provides a 4.5% fuel burn benefit over a non-intercooled geared reference engine. The optimum is constrained by the last stage compressor blade height. To further explore the potential of intercooling the constraint limiting the axial compressor last stage blade height is relaxed by introducing an axial radial high pressure compressor. The axial-radial high pressure ratio configuration allows for an ultra-high overall pressure ratio. With an optimal top-of-climb overall pressure ratio of 140, the configuration provides a 5.3% fuel burn benefit over the geared reference engine. The irreversibilities of the intercooler are broken down into its components to analyze the difference between the ultra-high overall pressure ratio axial-radial configuration and the purely axial configuration. An intercooler conceptual design method is used to predict pressure loss heat transfer and weight for the different overall pressure ratios. Exergy analysis combined with results from the intercooler and engine conceptual design are used to support the conclusion that the optimal pressure ratio split exponent stays relatively independent of the overall engine pressure ratio.
An optimal baseline turbofan cycle designed for a performance level expected to be available around year 2050 is established. Detailed performance data are given in take-off, top of climb, and cruise to support the analysis. The losses are analyzed, based on a combined use of the first and second law of thermodynamics, in order to establish a basis for a discussion on future radical engine concepts and to quantify loss levels of very high performance engines. In light of the performance of the future baseline engine, three radical cycles designed to reduce the observed major loss sources are introduced. The combined use of a first and second law analysis of an open rotor engine, an intercooled recuperated engine, and an engine working with a pulse detonation combustion core is presented. In the past, virtually no attention has been paid to the systematic quantification of the irreversibility rates of such radical concepts. Previous research on this topic has concentrated on the analysis of the turbojet and the turbofan engine. In the developed framework, the irreversibility rates are quantified through the calculation of the exergy destruction per unit time. A striking strength of the analysis is that it establishes a common currency for comparing losses originating from very different physical sources of irreversibility. This substantially reduces the complexity of analyzing and comparing losses in aero engines. In particular, the analysis sheds new light on how the intercooled recuperated engine establishes its performance benefits.
This work presents an experimental and numerical investigation on the laminar-turbulent transition and secondary flow structures in a Turbine Rear Structure (TRS). The study was executed at engine representative Reynolds number and inlet conditions at three different turbine load cases. Experiments were performed in an annular rotating rig with a shrouded low-pressure turbine upstream of a TRS test section. The numerical results were obtained using the SST k–ω turbulence model and the Langtry-Menter γ–θ transition model. The boundary layer transition location at the entire vane suction side is investigated. The location of the onset and the transition length are measured using IR-thermography along the entire vane span. The IR-thermography approach was validated using hot-wire boundary layer measurements. Both experiments and CFD show large variations of transition location along the vane span with strong influences from endwalls and turbine outlet conditions. Both correlate well with traditional transition onset correlations near midspan and show that the transition onset Reynolds number is independent of the acceleration parameter. However, CFD tends to predict an early transition onset in the midspan vane region and a late transition in the hub region. Furthermore, in the hub region, CFD is shown to overpredict the transverse flow and related losses.
An optimal baseline turbofan cycle designed for a performance level expected to be available around year 2050 is established. Detailed performance data are given in take-off, top of climb and cruise to support the analysis. Losses are analyzed based on a combined use of the first and second law of thermodynamics, to establish a basis for discussion on future radical engine concepts and to quantify loss levels of very high performance engines. In the light of the performance of the future baseline engine, three radical cycles designed to reduce the observed major loss sources are introduced. The combined use of a first and second law analysis of an open rotor engine, an intercooled recuperated engine and an engine working with a pulse detonation combustion core is presented. In the past, virtually no attention has been paid to the systematic quantification of the irreversibility rates of such radical concepts. Previous research on this topic has concentrated on the analysis of the turbojet and the turbofan engine. In the framework developed, the irreversibility rates are quantified through the calculation of the exergy destruction per unit time. A striking strength of the analysis is that it establishes a common currency for comparing losses originating from very different physical sources of irreversibility. This substantially reduces the complexity of analyzing and comparing losses in aero engines. In particular, the analysis sheds new light on how the intercooled recuperated engine establishes its performance benefits.
Although the benefits of intercooling for aero-engine applications have been realized and discussed in many publications, quantitative details are still relatively limited. In order to strengthen the understanding of aero-engine intercooling, detailed performance data on optimized intercooled (IC) turbofan engines are provided. Analysis is conducted using an exergy breakdown, i.e., quantifying the losses into a common currency by applying a combined use of the first and second law of thermodynamics. Optimal IC geared turbofan engines for a long range mission are established with computational fluid dynamics (CFD) based two-pass cross flow tubular intercooler correlations. By means of a separate variable nozzle, the amount of intercooler coolant air can be optimized to different flight conditions. Exergy analysis is used to assess how irreversibility is varying over the flight mission, allowing for a more clear explanation and interpretation of the benefits. The optimal IC geared turbofan engine provides a 4.5% fuel burn benefit over a non-IC geared reference engine. The optimum is constrained by the last stage compressor blade height. To further explore the potential of intercooling the constraint limiting the axial compressor last stage blade height is relaxed by introducing an axial radial high pressure compressor (HPC). The axial–radial high pressure ratio (PR) configuration allows for an ultrahigh overall PR (OPR). With an optimal top-of-climb (TOC) OPR of 140, the configuration provides a 5.3% fuel burn benefit over the geared reference engine. The irreversibilities of the intercooler are broken down into its components to analyze the difference between the ultrahigh OPR axial–radial configuration and the purely axial configuration. An intercooler conceptual design method is used to predict pressure loss heat transfer and weight for the different OPRs. Exergy analysis combined with results from the intercooler and engine conceptual design are used to support the conclusion that the optimal PR split exponent stays relatively independent of the overall engine PR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.