Background and purpose — The introduction of new total hip replacements (THRs) is known to be associated with an increased risk for complications. On completion of a competitive procurement process, a new uncemented cup system was introduced into general use at our institution in 2016. We launched this study after the introduction to assess (1) the incidence of early dislocations of the old (Pinnacle) and the new (Continuum) cup systems, and (2) whether the cup design would affect the risk for dislocation.
Patients and methods — We assessed the incidence of dislocations after 1,381 primary THRs performed at our institution during 2016. Also, the effect of the cup system (Pinnacle, Continuum with neutral liner, Continuum with elevated rim liner) on dislocation rates was analyzed using a multivariable regression model.
Results — 47 (3.4%) early dislocations were identified. The incidence of dislocations was 1.3% for the Pinnacle, 5.1% for the Continuum with neutral liner, and 1.2% for the Continuum with elevated rim liner. The Continuum with neutral liner was found to have an increased risk for dislocations compared with the Pinnacle (aOR 5, 95% CI 1.4–17). However, when an elevated rim liner was used with the Continuum, the risk for dislocation between the Continuum and the Pinnacle was similar.
Interpretation — Our results emphasize the need for both careful consideration before the introduction of new implants and the systematic monitoring of early outcomes thereafter. The elevated rim liner should be preferred for use with the Continuum cup because of the poor coverage of the neutral liner that may result in dislocations.
Dislocation is one of the most common complications after primary total hip arthroplasty (THA). Several patient-related risk factors for dislocation have been reported in the previous literature, but only few prediction models for dislocation have been made. Our aim was to build a prediction model for an early (within the first 2 years) revision for dislocation after primary THA using two different statistical methods. The study data constituted of 37 pre- or perioperative variables and postoperative follow-up data of 16 454 primary THAs performed at our institution in 2008–2021. Model I was a traditional logistic regression model and Model II was based on the elastic net method that utilizes machine learning. The models’ overall performance was measured using the pseudo R2 values. The discrimination of the models was measured using C-index in Model I and Area Under the Curve (AUC) in Model II. Calibration curves were made for both models. At 2 years postoperatively, 95 hips (0.6% prevalence) had been revised for dislocation. The pseudo R2 values were 0.04 in Model I and 0.02 in Model II indicating low predictive capability in both models. The C-index in Model I was 0.67 and the AUC in Model II was 0.73 indicating modest discrimination. The prediction of an early revision for dislocation after primary THA is difficult even in a large cohort of patients with detailed data available because of the reasonably low prevalence and multifactorial nature of dislocation. Therefore, the risk of dislocation should be kept in mind in every primary THA, whether the patient has predisposing factors for dislocation or not. Further, when conducting a prediction model, sophisticated methods that utilize machine learning may not necessarily offer significant advantage over traditional statistical methods in clinical setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.