Normal inverse Gaussian (NIG) distribution is quite a new distribution introduced in 1997. This is distribution, which describes evolution of NIG process. It appears that in many cases NIG distribution describes log-returns of stock prices with a high accuracy. Unlike normal distribution, it has higher kurtosis, which is necessary to fit many historical returns. This gives the opportunity to construct precise algorithms for hedging risks of options. The aim of the present research is to evaluate how well NIG distribution can reproduce stock price dynamics and to illuminate future fields of application.
-Very few models allow expressing European call option price in closed form. Out of them, the famous BlackScholes approach sets strong constraints -innovations should be normally distributed and independent. Availability of a corresponding characteristic function of log returns of underlying asset in analytical form allows pricing European call option by application of inverse Fourier transform. Characteristic function corresponds to Normal Inverse Gaussian (NIG) probability density function. NIG distribution is obtained based on assumption that time series of log returns follows APARCH process. Thus, volatility clustering and leptokurtic nature of log returns are taken into account. The Fast Fourier transform based on trapezoidal quadrature is numerically unstable if a standard cumulative probability function is used. To solve the problem, a dampened cumulative probability is introduced. As a computation tool Matlab framework is chosen because it contains many effective vectorization tools that greatly enhance code readability and maintenance. The characteristic function of Normal Inverse Gaussian distribution is taken and exercised with the chosen set of parameters. Finally, the call price dependence on strike price is obtained and rendered in XY plot. Valuation of European call option with analytical form of characteristic function allows further developing models with higher accuracy, as well as developing models for some exotic options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.