In this paper, the effects of biodiesel on performance and emission of the current and new-coming regulation cycles, namely the New European Driving Cycle (NEDC) and the Worldwide Harmonized Light Vehicles Test Cycle (WLTC), were investigated by conducting tests on a passenger car, a Euro-5 Ford Fiesta, equipped with a 1.5-L diesel engine. In a two-axle chassis dynamometer test bed, NEDC and WLTC were performed with pure diesel and biodiesel-to-diesel blend (30% biodiesel, 70% diesel in volume). A substantial reduction in CO (34%, 55%), HC (33%, 40%), and particulate number (PN) (22%, 31%) emissions was observed respectively for both the NEDC and WLTC when biodiesel was used. Besides, it was found that the WLTC has higher load and velocity profile compared to the NEDC. Moreover, lower CO, HC, and PN emissions were observed with B30 fuel under WLTC compared to the NEDC. Nevertheless, slightly higher CO2 and substantially higher NOx emissions were observed for the WLTC compared to the NEDC.
The Wankel engine is a rotary type of four-stroke cycle internal combustion engine. The higher specific power output is one of its strong advantages. In Wankel rotary engine, every eccentric shaft revolution corresponds to one four-stroke cycle, whereas conventional reciprocating engine fulfills four-stroke cycle in two crankshaft revolutions. This means the power stroke frequency is twice that of conventional engines. Theoretically, application of two-stroke cycle on Wankel geometry will duplicate the power stroke frequency. In this research, a single-zone thermodynamic model is developed for studying the performance characteristic of a two-stroke Wankel engine. Two different port timings were adapted from the literature. The results revealed that late opening and early closing port geometry (small opening area) with high supercharging pressure has higher performance at low speed range. However, as the rotor speed increases, the open period of the port area becomes insufficient for the gas exchange, which reduces power performance. Early opening and late closing port geometry (large opening area) with supercharging is more suitable in higher speed range. Port timing and area, charging pressure, and speed are the main factors that characterize output performance. These preliminary results show a potential for increasing power density by applying two-stroke cycle of the Wankel engine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.