Accurate and efficient point cloud registration is essential in various fields, such as robotics, autonomous driving and medical imaging. The size of point clouds presents a significant challenge for existing registration methods. In this paper, a novel point cloud sampling method to improve the performance of the point cloud registration process is proposed. Instead of geometric feature preservation, which is preferred in most existing sampling methods, our approach scales every point and groups the scaled points into clusters to generate a histogram for the point cloud. The histogram is then used to identify the most significant regions of the point cloud to create the downsampled output data. Experimental results demonstrate that the proposed method improves accuracy and is robust against noise. Registration errors are reduced by up to 7% in rotation and 116% in translation. Additionally, the proposed method filtered out up to 98% of noise from the point cloud that was uniformly distributed at a rate of 25%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.