The adhesion strength enhancement of oxygen plasma pre-treated laminated polypropylene nonwoven fabrics using two different types of adhesives was investigated in this study. Fabric surface modification was performed using low-pressure, radio-frequency oxygen plasma treatment. Effect of plasma treatment on fabric surface wettability was determined by vertical wicking measurements. Wettability of highly hydrophobic polypropylene nonwoven samples dramatically increased with increasing plasma power and exposure time. Plasma-treated polypropylene fibers showed rougher surfaces with increased plasma power and treatment times. X-ray photoelectron spectroscopy (XPS) analysis showed that oxygen plasma treatment of polypropylene fiber surface led to a significant increase in atomic percentage of oxygen compound responsible for hydrophilic surface. Peel strength enhancement of produced laminated fabrics was observed for plasma-treated samples compared to untreated samples. PU-based adhesive attached on the surface of both plasma-treated and untreated polypropylene nonwoven, filling the spaces between the fibers due to the penetration of the adhesive agent. The improvement in surface wettability of polypropylene nonwoven and the introduced sites through oxygen plasma treatment resulted in good adhesive bonding. For both adhesives, peel strength improvement of produced laminated fabrics was
In this study, improvement in the adhesion strength of plasma-pretreated and laminated cotton/polypropylene (PP) fabrics using acrylic-based adhesive was investigated. Low-temperature, low-pressure oxygen plasma was utilized for surface modification of cotton/PP-laminated fabrics. Water absorption time was measured on plasma-treated cotton fabrics at different plasma power and treatment time conditions. The plasma conditions providing the fastest liquid absorption on the surface were selected and applied during plasma pretreatments. Surface wettability increased with increasing plasma power and plasma exposure time. Plasma-induced surface morphology changes were observed via Scanning Electron Microscope (SEM) images. X-ray Photoelectron Spectroscopy (XPS) analysis showed that oxygen content on the surface increased with plasma treatment, which contributed to the surface polarity and hydrophilicity. Peel bond strength results of untreated and plasma-treated samples were analyzed to determine the effect of plasma pretreatment process. Adhesion strength values of laminated samples, before washing and after 40 wash cycles, were determined by peel bond strength tests. Before washing, adhesion strength of plasma pre-treated, laminated samples was 28-60% higher than that of untreated laminated fabrics. After 40 wash cycles, adhesion strength of plasma pre-treated and laminated samples was about 40-69% higher than the untreated laminated fabrics. Peel bond strength values decreased with the increased number of wash cycles. Plasma pretreatment enhanced both the adhesion strength and washing resistance of laminated samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.