Purpose This study discusses that the necessary criteria and the solution approach taken to resolve the main spatial infection problems with a burn center design should be evaluated holistically to achieve spatial infection control in a burn center. The burn center design plays an important role in protecting severely burned patients from infection because the microbial flora of the hospital can affect the infection risk. In hospitals, sterilization and disinfection are the basic components of infection prevention; however, the prevention and control of infection for burn patients also requires the design of burn centers that adhere to a specific set of criteria that considers spatial infection control in addition to appropriate burn treatment methods and treatments. In this study, a burn facility converted from a burn unit into a burn center is introduced and the necessary design inputs for the transformation are discussed because there is no holistic study in the literature that delas with all the spaces that should be in a burn center and relations between spaces. This study aims to define the functional relations between each of the units and the spaces that change according to different sterilization demands in the burn center for ensuring spatial infection control. Furthermore, it aims to propose a method for ensuring continuity in the control of spatial infections. Design/methodology/approach The burn care and health facilities guidelines are examined within the framework of spatial standards, together with a comprehensive literature review. The design method was based on the spread of microorganisms and the effect of human movement on space and spatial transitions in the burn center, according to all relevant literature reviews. To determine the extent to which the differences in treatment protocols of burn care guidelines were reflected in the space, interviews were conducted with burn facility officials. The plan–do–check–act (PDCA) method is also modeled to ensure the continuity of infection control in the burn center. Findings The burn center design findings are classified under three main headings, namely, location of the burn center in the hospital, spatial organization and physical features of the burn center and the air flowing system. The importance of the interactions among the criteria for spatial infection control has been revealed. Due to the physical space characteristics and air flow characteristics that change according to human movement and the way microorganisms spread, it has been seen that designing the air flow and architectural aspects together has an effective role in providing spatial infection control. Accordingly, a functional relation scheme for the center has been suggested. It is also proposed as a model to ensure the continuity of infection control in the burn center. Practical implications This research presents spatial measures for infection control in burn centers for practitioners in health-care settings such as designers, engineers, doctors and nurses. The PDCA method also leads to continuity of infection control for hospital management. Originality/value This is the first study, to the best of the authors’ knowledge, to focus on developing the criteria for spatial infection control in burn center. Moreover, the aim is to create a function chart that encompasses the relationships between the units within the burn center design so that infection control can be coordinated spatially.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.