Peas (Pisum sativum) are the fourth most cultivated pulses worldwide and a critical source of protein in animal feed and human food. Developing pea core collections improves our understanding of pea evolution and may ease the exploitation of their genetic diversity in breeding programs. We carefully selected a highly diverse pea core collection of 325 accessions and established their genetic diversity and population structure. DArTSeq genotyping provided 35,790 polymorphic DArTseq markers, of which 24,279 were SilicoDArT and 11,511 SNP markers. More than 90% of these markers mapped onto the pea reference genome, with an average of 2787 SilicoDArT and 1644 SNP markers per chromosome, and an average LD50 distance of 0.48 and 1.38 Mbp, respectively. The pea core collection clustered in three or six subpopulations depending on the pea subspecies. Many admixed accessions were also detected, confirming the frequent genetic exchange between populations. Our results support the classification of Pisum genus into two species, P. fulvum and P. sativum (including subsp. sativum, arvense, elatius, humile, jomardii and abyssinicum). In addition, the study showed that wild alleles were incorporated into the cultivated pea through the intermediate P. sativum subsp. jomardii and P. sativum subsp. arvense during pea domestication, which have important implications for breeding programs. The high genetic diversity found in the collection and the high marker coverage are also expected to improve trait discovery and the efficient implementation of advanced breeding approaches.
Pea (Pisum sativum L.) is a grain legume widely cultivated in temperate climates. It is important in the race for food security owing to its multipurpose low-input requirement and environmental promoting traits. Pea is key in nitrogen fixation, biodiversity preservation, and nutritional functions as food and feed. Unfortunately, like most crops, pea production is constrained by several pests and diseases, of which rhizosphere disease dwellers are the most critical due to their long-term persistence in the soil and difficulty to manage. Understanding the rhizosphere environment can improve host plant root microbial association to increase yield stability and facilitate improved crop performance through breeding. Thus, the use of various germplasm and genomic resources combined with scientific collaborative efforts has contributed to improving pea resistance/cultivation against rhizospheric diseases. This improvement has been achieved through robust phenotyping, genotyping, agronomic practices, and resistance breeding. Nonetheless, resistance to rhizospheric diseases is still limited, while biological and chemical-based control strategies are unrealistic and unfavourable to the environment, respectively. Hence, there is a need to consistently scout for host plant resistance to resolve these bottlenecks. Herein, in view of these challenges, we reflect on pea breeding for resistance to diseases caused by rhizospheric pathogens, including fusarium wilt, root rots, nematode complex, and parasitic broomrape. Here, we will attempt to appraise and harmonise historical and contemporary knowledge that contributes to pea resistance breeding for soilborne disease management and discuss the way forward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.