The rapid degradation of coral reefs is one of the most serious biodiversity problems facing our generation. Mesophotic coral reefs (at depths of 30 to 150 meters) have been widely hypothesized to provide refuge from natural and anthropogenic impacts, a promise for the survival of shallow reefs. The potential role of mesophotic reefs as universal refuges is often highlighted in reef conservation research. This hypothesis rests on two assumptions: (i) that there is considerable overlap in species composition and connectivity between shallow and deep populations and (ii) that deep reefs are less susceptible to anthropogenic and natural impacts than their shallower counterparts. Here we present evidence contradicting these assumptions and argue that mesophotic reefs are distinct, impacted, and in as much need of protection as shallow coral reefs.
Most marine organisms disperse via ocean currents as larvae, so it is often assumed that larval-stage duration is the primary determinant of geographic range size. However, empirical tests of this relationship have yielded mixed results, and alternative hypotheses have rarely been considered. Here we assess the relative influence of adult and larval-traits on geographic range size using a global dataset encompassing 590 species of tropical reef fishes in 47 families, the largest compilation of such data to date for any marine group. We analyze this database using linear mixed-effect models to control for phylogeny and geographical limits on range size. Our analysis indicates that three adult traits likely to affect the capacity of new colonizers to survive and establish reproductive populations (body size, schooling behavior, and nocturnal activity) are equal or better predictors of geographic range size than pelagic larval duration. We conclude that adult life-history traits that affect the postdispersal persistence of new populations are primary determinants of successful range extension and, consequently, of geographic range size among tropical reef fishes.eographic range size is a fundamental biogeographic variable that, among other effects (1, 2), strongly influences a species susceptibility to extinction (3, 4). Because most marine organisms disperse as larval propagules transported by ocean currents, it is often assumed that the duration of the larval stage is the fundamental determinant of their dispersal ability, and hence their range size (5, 6). Tropical reef fishes have geographic ranges that vary greatly in size, from a few square kilometers around tiny isolated islands to entire ocean basins (7-9). Given that pelagic larval duration (PLD) also varies greatly among such fishes, from only a few days to many months, the effects of PLD on dispersal potential became an early focus of investigation on general determinants of range size among those fishes and other near-shore marine species (10-12). However, although it has become evident that PLD is unlikely to be a primary determinant of geographic range size (13-16), alternative hypotheses have only recently begun to be considered (9).To expand its geographic range, a species must successfully colonize new areas following the dispersal of its propagules (17). Consequently, attributes other than pelagic dispersal capacity may largely determine how widely reef fishes are distributed geographically (9). Here we assess the relative importance of seven adult and larval traits in influencing geographic range sizes of tropical reef fishes at the global scale. We do so using data from 590 species of tropical reef fishes in 47 families, the largest compilation of such data currently available for any marine group (Dataset S1). Traits directly linked to larval dispersal potential include PLD and spawning mode. Adult traits include maximum body size, schooling behavior, nocturnal activity, use of multiple habitat types, and adult depth range. The adultbiology tra...
How do biogeographically different provinces arise in response to oceanic barriers to dispersal? Here, we analyse how traits related to the pelagic dispersal and adult biology of 985 tropical reef fish species correlate with their establishing populations on both sides of two Atlantic marine barriers: the Mid-Atlantic Barrier (MAB) and the Amazon -Orinoco Plume (AOP). Generalized linear mixed-effects models indicate that predictors for successful barrier crossing are the ability to raft with flotsam for the deep-water MAB, non-reef habitat usage for the freshwater and sediment-rich AOP, and large adult-size and large latitudinal-range for both barriers. Variation in larval-development mode, often thought to be broadly related to larval-dispersal potential, is not a significant predictor in either case. Many more species of greater taxonomic diversity cross the AOP than the MAB. Rafters readily cross both barriers but represent a much smaller proportion of AOP crossers than MAB crossers. Successful establishment after crossing both barriers may be facilitated by broad environmental tolerance associated with large body size and wide latitudinal-range. These results highlight the need to look beyond larval-dispersal potential and assess adult-biology traits when assessing determinants of successful movements across marine barriers.
Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research.
Aim To present an updated database of fish species recorded on south‐western Atlantic reef environments and to explore the ecological drivers of the structure, the latitudinal gradient of biodiversity and the centre of endemism in this peripheral province. Location South‐western Atlantic (SWA): Brazilian and Argentinian Provinces. Methods A database composed of 733 fish species along 23 locations in the SWA (00°55′ N to 43°00′ S) was compiled based on primary data, literature and museum records. Cluster and beta diversity analyses were carried out to evaluate faunal overlaps among locations and subprovinces. “Target‐area‐distance effect” and “stepping stones dispersal” hypotheses for assemblage composition were tested through Mantel tests. Relationships between the distribution patterns and ecological traits of reef fish species were investigated through generalized linear mixed‐effect models. Results Out of the 733 fish species, 405 are SWA resident reef fishes, of which 111 (27%) are endemics and 78 are threatened with extinction. Cluster analysis detected six subprovinces in the SWA structured following the target‐area‐distance model, and with no evidence for a latitudinal gradient in diversity. The greatest overall richness and endemic species richness were found in the east–south‐eastern region. Depth range, habitat use and body size were the main drivers of SWA reef fish assemblage structure. Main conclusions The Brazilian and Argentinian coasts constitute different provinces structured by oceanographic barriers and environmental filters. Similarities among oceanic islands indicate connectivity driven by stochastic and ecological factors. Species richness and endemism indicate that peripheral provinces may also bear centres of origin and biodiversity, patterns driven by parapatric/ecological speciation and the overlap between tropical and subtropical reef fish species. Ecological drivers of reef fish distribution, such as habitat specialization and body size, support hypotheses of speciation in the periphery. New approaches for spatial planning, marine protected areas and off‐reserve marine management are essential for the conservation and sustainability of SWA reef fishes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.