A major cause of seismic attenuation in fluid-saturated rocks is the flow of the pore fluid induced by the passing wave. At sonic and ultrasonic frequencies, attenuation appears to be dominated by the local ͑pore-scale͒ flow between pores of different shapes and orientations. A simple squirt flow model is developed in which all of the parameters can be independently measured or estimated from measurements. The pore space of the rock is assumed to consist of stiff porosity and compliant ͑or soft͒ pores present at grain contacts. The effect of isotropically distributed compliant pores is modeled by considering pressure relaxation in a disk-shaped gap between adjacent grains. This derivation gives the complex and frequency-dependent effective bulk and shear moduli of a rock, in which the compliant pores are liquid saturated and stiff pores are dry. The resulting squirt model is consistent with Gassmann's and Mavko-Jizba equations at low and high frequencies, respectively. The magnitude of attenuation and dispersion given by the model is directly related to the variation of dry bulk modulus with pressure and is relatively independent of fluid properties.
Up‐scaling the elastic properties of digitized rock volumes as obtained from X‐ray computer tomography (CT) imaging via computer simulations has the potential to assist and complement laboratory measurements. This computational up‐scaling approach remains a challenging task as the overall elastic properties are not only dependent on the elastic properties of individual grains but also on the hardly resolvable pore spaces between adjacent grains such as micro‐cracks. We develop a digitized rock image and elastic up‐scaling workflow based on general‐purpose and widely available software packages. Particular attention is paid to CT image processing including filtering, smoothing and segmentation. A strategy for optimal meshing for subsequent finite‐element modelling is also proposed. We apply this workflow to the micro‐tomographic image of a well‐consolidated, feldspatic sandstone sample and determine the up‐scaled bulk and shear moduli. These effective elastic moduli are compared to the moduli inferred from laboratory ultrasound measurements at variable effective stresses (0–70 MPa). We observe that the numerically up‐scaled elastic moduli correspond to the moduli at a certain effective stress level (50 MPa), beyond which the effective‐stress dependency follows a linear trend. This indicates that the computational up‐scaling approach yields moduli as if all compliant (soft) porosity was absent, i.e., microcracks are closed. To confirm this hypothesis, we estimate the amount of soft porosity on the basis of the double‐porosity theory (Shapiro, 2003) and find that at 50 MPa the soft porosity is indeed practically zero. We conclude that our computational elastic up‐scaling approach yields physically consistent effective moduli even if some geometrical features are below CT resolution. To account for these sub‐resolution features either theoretical or additional computational approaches can be used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.