Textual content appearing in videos represents an interesting index for semantic retrieval of videos (from archives), generation of alerts (live streams), as well as high level applications like opinion mining and content summarization. The key components of such systems require detection and recognition of textual content which also make the subject of our study. This paper presents a comprehensive framework for detection and recognition of textual content in video frames. More specifically, we target cursive scripts taking Urdu text as a case study. Detection of textual regions in video frames is carried out by fine-tuning deep neural networks based object detectors for the specific case of text detection. Script of the detected textual content is identified using convoluational neural networks (CNNs), while for recognition, we propose a UrduNet, a combination of CNNs and long short-term memory (LSTM) networks. A benchmark dataset containing cursive text with more than 13,000 video frame is also developed. A comprehensive series of experiments is carried out reporting an F-measure of 88.3% for detection while a recognition rate of 87%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.