The coloration of species can have multiple functions, such as predator avoidance and sexual signalling, that directly affect fitness. As selection should favour traits that positively affect fitness, the genes underlying the trait should reach fixation, thereby preventing the evolution of polymorphisms. This is particularly true for aposematic species that rely on coloration as a warning signal to advertise their unprofitability to predators. Nonetheless, there are numerous examples of aposematic species showing remarkable colour polymorphisms. We examined whether colour polymorphism in the wood tiger moth is maintained by trade-offs between different functions of coloration. In Finland, males of this species have two distinct colour morphs: white and yellow. The efficacy of the warning signal of these morphs was tested by offering them to blue tits in the laboratory. Birds hesitated significantly longer to attack yellow than white males. In a field experiment, the survival of the yellow males was also higher than white males. However, mating experiments in the laboratory revealed that yellow males had lower mating success than white males. Our results offer an explanation for the maintenance of polymorphism via trade-off between survival selection and mating success.
Summary1. Polymorphism in warning coloration is puzzling because positive frequency-dependent selection by predators is expected to promote monomorphic warning signals in defended prey. 2. We studied predation on the warning-coloured wood tiger moth (Parasemia plantaginis) by using artificial prey resembling white and yellow male colour morphs in five separate populations with different naturally occurring morph frequencies. 3. We tested whether predation favours one of the colour morphs over the other and whether that is influenced either by local, natural colour morph frequencies or predator community composition. 4. We found that yellow specimens were attacked less than white ones regardless of the local frequency of the morphs indicating frequency-independent selection, but predation did depend on predator community composition: yellows suffered less attacks when Paridae were abundant, whereas whites suffered less attacks when Prunellidae were abundant. 5. Our results suggest that spatial heterogeneity in predator community composition can generate a geographical mosaic of selection facilitating the evolution of polymorphic warning signals. This is the first time this mechanism gains experimental support. Altogether, this study sheds light on the evolution of adaptive coloration in heterogeneous environments.
Melanin production is often considered costly, yet beneficial for thermoregulation. Studies of variation in melanization and the opposing selective forces that underlie its variability contribute greatly to understanding natural selection. We investigated whether melanization benefits are traded off with predation risk to promote observed local and geographical variation in the warning signal of adult male wood tiger moths (Parasemia plantaginis). Warning signal variation is predicted to reduce survival in aposematic species. However, in P. plantaginis, male hindwings are either yellow or white in Europe, and show continuous variation in melanized markings that cover 20 to 90 per cent of the hindwing. We found that the amount of melanization increased from 40 to 59 per cent between Estonia (588 N) and north Finland (678 N), suggesting melanization carries thermoregulatory benefits. Our thermal measurements showed that more melanic individuals warmed up more quickly on average than less melanic individuals, which probably benefits flight in cold temperatures. With extensive field experiments in central Finland and the Alpine region, we found that more melanic individuals suffered increased predation. Together, our data suggest that warning signal efficiency is constrained by thermoregulatory benefits. Differences in relative costs and benefits of melanin probably help to maintain the geographical warning signal differences.
Most research into the adaptive significance of warning signals has focused on the colouration and patterns of prey animals. However, behaviour, odour and body shape can also have signal functions and thereby reduce predators' willingness to attack defended prey. European vipers all have a distinctive triangular head shape; and they are all venomous. Several non-venomous snakes, including the subfamily Natricinae, commonly flatten their heads (also known as head triangulation) when disturbed. The adaptive significance of this potential behavioural mimicry has never been investigated.We experimentally tested if the triangular head shape typical of vipers offers protection against predation. We compared the predation pressure of free-ranging predators on artificial snakes with triangular-shaped heads against the pressure on replicas with narrow heads. Snakes of both head types had either zigzag patterned bodies, typical of European vipers, or plain (patternless) bodies. Plain snakes with narrower Colubrid-like heads suffered significantly higher predation by raptors than snakes with triangular-shaped heads. Head shape did not, however, have an additive effect on survival in zigzag-patterned snakes, suggesting that species which differ from vipers in colouration and pattern would benefit most from behavioural mimicry. Our results demonstrate that the triangular head shape typical of vipers can act as a warning signal to predators. We suggest that head-shape mimicry may be a more common phenomenon among more diverse taxa than is currently recognised.
Predation pressure is expected to drive visual warning signals to evolve toward conspicuousness. However, coloration of defended species varies tremendously and can at certain instances be considered as more camouflaged rather than conspicuous. Recent theoretical studies suggest that the variation in signal conspicuousness can be caused by variation (within or between species) in predators' willingness to attack defended prey or by the broadness of the predators' signal generalization. If some of the predator species are capable of coping with the secondary defenses of their prey, selection can favor reduced prey signal conspicuousness via reduced detectability or recognition. In this study, we combine data collected during three large-scale field experiments to assess whether variation in avian predator species (red kite, black kite, common buzzard, short-toed eagle, and booted eagle) affects the predation pressure on warningly and non-warningly colored artificial snakes. Predation pressure varied among locations and interestingly, if common buzzards were abundant, there were disadvantages to snakes possessing warning signaling. Our results indicate that predator community can have important consequences on the evolution of warning signals. Predators that ignore the warning signal and defense can be the key for the maintenance of variation in warning signal architecture and maintenance of inconspicuous signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.