We review the basic theoretical underpinnings of the Grover algorithm, providing a rigorous and well motivated derivation. We then present a generalization of Grover's algorithm that searches an arbitrary subspace of the multi-dimensional Hilbert space using a diffusion operation and an amplitude amplification procedure that has been biased by unitary steering operators. We also outline a generalized Grover's algorithm that takes into account higher level correlations that could exist between database elements. In the traditional Grover algorithm, the Hadamard gate selects a uniform sample of computational basis elements when performing the phase selection and diffusion. In contrast, steered operators bias the selection process, thereby providing more flexibility in selecting the target state. Our method is a generalization of the recently proposal pattern matching algorithm of Hiroyuki et al..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.