our objectives were to describe and compare the uterine bacterial composition of postpartum Holstein cows diagnosed as healthy (n = 8), subclinical endometritis (SCE; n = 8), or clinical endometritis (CE; n = 5) in the fifth week postpartum. We did metagenomic analyses of 16S rRNA gene sequences from endometrial cytobrush samples at 10, 21, and 35 days in milk (DIM), and endometrial bacterial culture at 35 DIM. Uterine bacterial composition in healthy, SCE, and CE was stable at 10, 21, and 35 DIM. Alpha and beta diversities showed a different uterine microbiome from CE compared to healthy or SCE, but no differences were found between healthy and SCE cows. At the phylum level, the relative abundance of Bacteroidetes and Fusobacteria, and at genera level, of Trueperella was greater in ce than healthy or Sce cows. Trueperella pyogenes was the predominant bacteria cultured in cows with ce, and a wide variety of bacterial growth was found in healthy and Sce cows. Bacteria that grew in culture were represented within the most abundant bacterial genera based on metagenomic sequencing. the uterine microbiota was similar between Sce and healthy, but the microbiome in cows with ce had a loss of bacterial diversity. Multiple potential mechanisms that drive reproductive tract inflammatory disease in dairy cattle have been discovered 1,2 , but questions remain about the nature and causes of the different manifestations of reproductive tract infection and inflammation. Remarkable changes in the composition of the microbiome occur in postpartum cows that develop uterine disease 3,4 , but few papers have described the dynamics of the uterine microflora in healthy postpartum cows 5,6. A robust but well-regulated postpartum uterine inflammatory response is necessary to avoid disease 7. However, in early lactation, cows experience a state of immune dysfunction concurrent with changes in metabolism associated with physiologic adaptations to support milk production. Although certain phyla and genera of bacteria are reasonably consistently associated with some forms of uterine disease, the changes of the microbiome and the host interaction with it in the progression or avoidance of disease are only partially understood. Metritis (overt systemic illness due to uterine infection, characterized by fetid vaginal discharge) and purulent vaginal discharge (PVD) without systemic signs have commonly been associated with Trueperella pyogenes using culture-dependent methods 8,9,10. Clinical endometritis (CE) is PVD with concurrent endometritis based on > 5% polymorphonuclear (PMN) neutrophils 7,11. However, with the advent of cultureindependent methods using metagenomic sequencing, it has been shown that loss of diversity and increase in abundance of Bacteroides, Porphyromonas, and Fusobacterium were associated with metritis and PVD in postpartum cows 3,4,12. Numerous studies attempted to associate the presence of bacteria with subclinical endometritis (SCE; absence of PVD and > 5% endometrial PMN), but the role of pathogenic bacteria in SCE re...
BackgroundSince the development of in vitro embryo production in cattle, different supplements have been added to culture media to support embryo development, with serum being the most popular. However, the addition of serum during embryo culture can induce high birthweights and low viability in calves (Large Offspring Syndrome). Analysis of global gene expression in bovine embryos produced under different conditions can provide valuable information to optimize culture media for in vitro embryo production.ResultsWe used RNA sequencing to examine the effect of in vitro embryo production, in either serum-containing or serum-free media, on the global gene expression pattern of individual bovine blastocysts. Compared to in vivo derived embryos, embryos produced in serum-containing medium had five times more differentially expressed genes than embryos produced in serum-free conditions (1109 vs. 207). Importantly, in vitro production in the presence of serum appeared to have a different impact on the embryos according to their sex, with male embryos having three times more genes differentially expressed than their female counterparts (1283 vs. 456). On the contrary, male and female embryos produced in serum-free conditions showed the same number (191 vs. 192) of genes expressed differentially; however, only 44 of those genes were common in both comparisons. The pathways affected by in vitro production differed depending on the type of supplementation. For example, embryos produced in serum-containing conditions had a lower expression of genes related to metabolism while embryos produced in serum-free conditions showed aberrations in genes involved in lipid metabolism.ConclusionsSerum supplementation had a major impact on the gene expression pattern of embryos, with male embryos being the most affected. The transcriptome of embryos produced in serum-free conditions showed a greater resemblance to that of in vivo derived embryos, although genes involved in lipid metabolism were altered. Male embryos appeared to be most affected by suboptimal in vitro culture, i.e. in the presence of serum.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2393-z) contains supplementary material, which is available to authorized users.
Is the rate and nature of chromosome instability (CIN) similar between bovine in vivo-derived and in vitro-cultured cleavage-stage embryos? SUMMARY ANSWER: There is a major difference regarding chromosome stability of in vivo-derived and in vitro-cultured embryos, as CIN is significantly lower in in vivo-derived cleavage-stage embryos compared to in vitro-cultured embryos.WHAT IS KNOWN ALREADY: CIN is common during in vitro embryogenesis and is associated with early embryonic loss in humans, but the stability of in vivo-conceived cleavage-stage embryos remains largely unknown.STUDY DESIGN, SIZE, DURATION: Because human in vivo preimplantation embryos are not accessible, bovine (Bos taurus) embryos were used to study CIN in vivo. Five young, healthy, cycling Holstein Friesian heifers were used to analyze single blastomeres of in vivo embryos, in vitro embryos produced by ovum pick up with ovarian stimulation (OPU-IVF), and in vitro embryos produced from in vitro matured oocytes retrieved without ovarian stimulation (IVM-IVF).PARTICIPANTS/MATERIALS, SETTING, METHODS: Single blastomeres were isolated from embryos, whole-genome amplified and hybridized on Illumina BovineHD BeadChip arrays together with the bulk DNA from the donor cows (mothers) and the bull (father). DNA was also obtained from the parents of the bull and from the parents of the cows (paternal and maternal grandparents, respectively). Subsequently, genome-wide haplotyping and copy-number profiling was applied to investigate the genomic architecture of 171 single bovine blastomeres of 16 in vivo, 13 OPU-IVF and 13 IVM-IVF embryos. MAIN RESULTS AND THE ROLE OF CHANCE:The genomic stability of single blastomeres in both of the in vitro-cultured embryo cohorts was severely compromised (P < 0.0001), and the frequency of whole chromosome or segmental aberrations was higher in embryos † These authors are contributed equally to this work.
For vitrification of immature equine oocytes, the use of 1) CR oocytes, 2) a high concentration of CPAs, and 3) a short exposure time may be key factors for maintaining developmental competence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.