We develop a theoretical approach for nuclear spectral functions at high missing momenta and removal energies based on the multi-nucleon short-range correlation (SRC) model. The approach is based on the effective Feynman diagrammatic method which allows to account for the relativistic effects important in the SRC domain. In addition to two-nucleon SRC with center of mass motion we derive also the contribution of three-nucleon SRCs to the nuclear spectral functions. The latter is modeled based on the assumption that 3N SRCs are a product of two sequential short range NN interactions. This approach allowed us to express the 3N SRC part of the nuclear spectral function as a convolution of two NN SRCs. Thus the knowledge of 2N SRCs allows us to model both two-and three-nucleon SRC contributions to the spectral function. The derivations of the spectral functions are based on the two theoretical frameworks in evaluating covariant Feynman diagrams: In the first, referred as virtual nucleon approximation, we reduce Feynman diagrams to the time ordered noncovariant diagrams by evaluating nucleon spectators in the SRC at their positive energy poles, neglecting explicitly the contribution from vacuum diagrams. In the second approach, referred as light-front approximation, we formulate the boost invariant nuclear spectral function in the lightfront reference frame in which case the vacuum diagrams are generally suppressed and the bound nucleon is described by its light-cone variables such as momentum fraction, transverse momentum and invariant mass.
DEDICATIONThis dissertation is dedicated to Rita Elisa and Ana Rita, my grandmother and my mother, The main goal of the research presented in my dissertation was to develop a theoretical model for relativistic nuclear spectral functions at high missing momenta and removal energies based on the multi-nucleon short-range correlation (SRC) model. The nuclear spectral functions are necessary for the description of high energy nuclear processes currently being studied at different labs such as JLAB, LHC and FNAL.The model followed the effective Feynman diagrammatic approach in order to account for the relativistic effects important in the SRC domain. In addition to the two-nucleon (2N) SRC with center of mass motion contribution, the contribution of the three-nucleon SRCs to the spectral functions was also derived. The latter was modeled based on the assumption that the 3N SRCs are a product of two sequential short range nucleon-nucleon (NN) interactions.The nuclear spectral functions models were derived from two theoretical frameworks for evaluating covariant Feynman diagrams: In the first, referred to as the virtual nucleon approximation, the Feynman diagrams were reduced to the time ordered non-covariant diagrams by evaluating the nucleon spectators in the SRC at their positive energy poles, neglecting explicitly the contribution from vacuum diagrams. In the second approach, referred to as the lightfront approximation, the boost invariant nuclear spectral function was formulated in the lightfront reference frame in which case the vacuum diagrams are kinematically suppressed and the bound nucleon is described by its light-front variables such as momentum fraction, transverse momentum and invariant mass.v On the basis of the derived nuclear spectral functions, the corresponding computational models were developed from which the numerical estimates of the SRC spectral functions, the SRC momentum distributions, and the SRC density matrices were obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.