Graphene and its derivatives are promising candidates for important biomedical applications because of their versatility. The prospective use of graphene-based materials in a biological context requires a detailed comprehension of the toxicity of these materials. Moreover, due to the expanding applications of nanotechnology, human and environmental exposures to graphene-based nanomaterials are likely to increase in the future. Because of the potential risk factors associated with the manufacture and use of graphene-related materials, the number of nanotoxicological studies of these compounds has been increasing rapidly in the past decade. These studies have researched the effects of the nanostructural/biological interactions on different organizational levels of the living system, from biomolecules to animals. This review discusses recent results based on in vitro and in vivo cytotoxicity and genotoxicity studies of graphene-related materials and critically examines the methodologies employed to evaluate their toxicities. The environmental impact from the manipulation and application of graphene materials is also reported and discussed. Finally, this review presents mechanistic aspects of graphene toxicity in biological systems. More detailed studies aiming to investigate the toxicity of graphene-based materials and to properly associate the biological phenomenon with their chemical, structural, and morphological variations that result from several synthetic and processing possibilities are needed. Knowledge about graphene-based materials could ensure the safe application of this versatile material. Consequently, the focus of this review is to provide a source of inspiration for new nanotoxicological approaches for graphene-based materials.
Microorganisms play an important role in toxic metal remediation through reduction of metal ions. Studies demonstrated that silver ions may be reduced extracellularly using Fusarium oxysporum to generate stable gold or silver nanoparticles in water. These particles can be incorporated in several kinds of materials such as cloths. These cloths with silver nanoparticles are sterile and can be useful in hospitals to prevent or to minimize infection with pathogenic bacteria such as Staphylococcus aureus. In this work, the extracellular production of silver nanoparticles by F. oxysporum and its antimicrobial effect when incorporated in cotton fabrics against S. aureus were studied. In addition, all effluent was bioremediated using treatment with C. violaceum. The results showed that cotton fabrics incorporated with silver nanoparticles displayed a significant antibacterial activity against S. aureus. The effluent derived from the process was treated with C. violaceum and exhibited an efficient reduction in the silver nanoparticles concentration. In conclusion, it was demonstrated the application of biological synthesis to silver nanoparticles production and its incorporation in cloths, providing them sterile properties. Moreover, to avoid any damage to the environment the effluent containing silver nanoparticles can be treated with cyanogenic bacterial strains.
Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver nanoparticles were in the range of 20-50 nm in dimensions. The reduction of the metal ions occurs by a nitrate-dependent reductase and a shuttle quinone extracellular process. The potentialities of this nanotechnological design based in fugal biosynthesis of nanoparticles for several technical applications are important, including their high potential as antibacterial material.
As propriedades da prata são conhecidas há muitos anos. Recentemente, as nanopartículas de prata têm chamado a atenção por sua atividade antimicrobiana que oferece a possibilidade de uso com propósitos médicos e de higiene. Estas nanopartículas de prata em diferentes formulações, com diferentes formas e tamanhos, exibem atividades antimicrobianas diferentes. Entretanto, os mecanismos da atividade antimicrobiana de íons e de nanopartículas, assim como sua toxicidade em tecidos humanos não estão totalmente esclarecidos. Esta revisão avalia o uso potencial de nanopartículas de prata no controle de patogênicos com ênfase sobre sua ação contra bactérias patogênicas, sua toxicidade e possíveis mecanismos de ação.The antimicrobial properties of silver have been known for thousands of years. Recently, silver nanoparticles have gained attention because of their antimicrobial activity which offers the possibility of their use for medical and hygiene purposes. Indeed, silver nanoparticles in different formulations and with different shapes and sizes exhibit variable antimicrobial activity. However, the mechanisms of antimicrobial activity of silver ions and silver nanoparticles, and their toxicity to human tissues are not fully characterized. This review evaluates the potential use of silver nanoparticles to control pathogens with emphasis on their action against pathogenic bacteria, their toxicity and possible mechanisms of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.