Obesity and its associated complications like type 2 diabetes (T2D) are reaching epidemic stages. Increased food intake and lack of exercise are two main contributing factors. Recent work has been highlighting an increasingly more important role of gut microbiota in metabolic disorders. It’s well known that gut microbiota plays a major role in the development of food absorption and low grade inflammation, two key processes in obesity and diabetes. This review summarizes key discoveries during the past decade that established the role of gut microbiota in the development of obesity and diabetes. It will look at the role of key metabolites mainly the short chain fatty acids (SCFA) that are produced by gut microbiota and how they impact key metabolic pathways such as insulin signalling, incretin production as well as inflammation. It will further look at the possible ways to harness the beneficial aspects of the gut microbiota to combat these metabolic disorders and reduce their impact.
The aim of the present study was to investigate alterations in gut microbiota associated with hypercholesterolemia and treatment with atorvastatin, a commonly prescribed cholesterol-lowering drug. In this study, seven experimental groups of rats were developed based on diets [high-fat diet (HFD) and normal chow diet (NCD)] and various doses of atorvastatin in HFD and NCD groups. 16S rRNA amplicon sequencing was used to analyze the gut microbiota. Atorvastatin significantly reduced the cholesterol level in treated rats. Bacterial diversity was decreased in the drug-treated NCD group compared to the NCD control, but atorvastatin-treated HFD groups showed a relative increase in biodiversity compared to HFD control group. Atorvastatin promoted the relative abundance of Proteobacteria and reduced the abundance of Firmicutes in drug-treated HFD groups. Among the dominant taxa in the drug-treated HFD groups, Oscillospira, Parabacteroides, Ruminococcus, unclassified CF231, YRC22 (Paraprevotellaceae), and SMB53 (Clostridiaceae) showed reversion in population distribution toward NCD group relative to HFD group. Drug-treated HFD and NCD groups both showed an increased relative abundance of Helicobacter. Overall, bacterial community composition was altered, and diversity of gut microbiota increased with atorvastatin treatment in HFD group. Reversion in relative abundance of specific dominant taxa was observed with drug treatment to HFD rats.
Hypercholesterolemia is one of the most important risk factors for development of cardiovascular diseases. The composition of gut microbiota (total microbes residing in the gut) impacts on cholesterol and lipid metabolism. On the contrary, alterations in gut microbiota in response to hypercholesterolemia or drug treatment with atorvastatin (a cholesterol-lowering agent) are rarely investigated. We performed 16S rDNA amplicon sequencing to evaluate the gut bacterial community of 15 untreated hypercholesterolemic patients (HP) and 27 atorvastatin-treated hypercholesterolemic patients (At-HP) and compared with 19 healthy subjects (HS). In total, 18 different phyla were identified in the study groups. An increase in relative abundance of Proteobacteria was observed in the HP group compared with At-HP and HS groups. The atherosclerosis-associated genus Collinsella was found at relatively higher abundance in the HP group. The anti-inflammation-associated bacteria (Faecalibacterium prausnitzii, Akkermansia muciniphila, and genus Oscillospira) were found in greater abundance, and proinflammatory species Desulfovibrio sp. was observed at decreased abundance in the drug-treated HP group compared with the untreated HP group. Relative abundances of the Bilophila wadsworthia and Bifidobacterium bifidum (bile acid-associated species) were decreased in the At-HP group. The At-HP and HS clustered separately from HP in the principal coordinate analysis. Decreased bacterial diversity was observed in the atorvastatin-treated group. In conclusion, these data suggest that atorvastatin treatment of patients with hypercholesterolemia may selectively restore the relative abundance of several dominant and functionally important taxa that were disrupted in the HP. Further studies are required to investigate the putative modifying effects of hypocholesterolemic drugs on functionality of gut microbiota, and the potential downstream effects on human health.
Histopathological evaluation indicated reduced incidence of hepatic nodules, necrosis formation, infiltration of inflammatory cells, blood vessel inflammation and cell swelling with RT-PLGA-NP treatment along with considerable downregulation in the levels of proinflammatory cytokines.
The epigenetic silencing of tumor suppressor genes (TSGs) is a common finding in several solid and hematological tumors involving various epigenetic readers and writers leading to enhanced cell proliferation and defective apoptosis. Thymoquinone (TQ), the major biologically active compound of black seed oil, has demonstrated anticancer activities in various tumors by targeting several pathways. However, its effects on the epigenetic code of cancer cells are largely unknown. In the present study, we performed RNA sequencing to investigate the anticancer mechanisms of TQ-treated T-cell acute lymphoblastic leukemia cell line (Jurkat cells) and examined gene expression using different tools. We found that many key epigenetic players, including ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 ( UHRF1), DNMT1,3A,3B, G9A, HDAC1,4,9, KDM1B , and KMT2A,B,C,D,E , were downregulated in TQ-treated Jurkat cells. Interestingly, several TSGs, such as DLC1, PPARG, ST7, FOXO6, TET2, CYP1B1, SALL4 , and DDIT3 , known to be epigenetically silenced in various tumors, including acute leukemia, were upregulated, along with the upregulation of several downstream pro-apoptotic genes, such as RASL11B, RASD1, GNG3, BAD , and BIK . Data obtained from RNA sequencing were confirmed using quantitative reverse transcription polymerase chain reaction (RT-qPCR) in Jurkat cells, as well as in a human breast cancer cell line (MDA-MB-468 cells). We found that the decrease in cell proliferation and in the expression of UHRF1, DNMT1, G9a , and HDAC1 genes in both cancer cell (Jurkat cells and MDA-MB-468 cells) lines depends on the TQ dose. Our results indicate that the use of TQ as an epigenetic drug represents a promising strategy for epigenetic therapy for both solid and blood tumors by targeting both DNA methylation and histone post-translational modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.