We present a new update to MetaboAnalyst (version 4.0) for comprehensive metabolomic data analysis, interpretation, and integration with other omics data. Since the last major update in 2015, MetaboAnalyst has continued to evolve based on user feedback and technological advancements in the field. For this year's update, four new key features have been added to MetaboAnalyst 4.0, including: (1) real-time R command tracking and display coupled with the release of a companion MetaboAnalystR package; (2) a MS Peaks to Pathways module for prediction of pathway activity from untargeted mass spectral data using the mummichog algorithm; (3) a Biomarker Meta-analysis module for robust biomarker identification through the combination of multiple metabolomic datasets and (4) a Network Explorer module for integrative analysis of metabolomics, metagenomics, and/or transcriptomics data. The user interface of MetaboAnalyst 4.0 has been reengineered to provide a more modern look and feel, as well as to give more space and flexibility to introduce new functions. The underlying knowledgebases (compound libraries, metabolite sets, and metabolic pathways) have also been updated based on the latest data from the Human Metabolome Database (HMDB). A Docker image of MetaboAnalyst is also available to facilitate download and local installation of MetaboAnalyst. MetaboAnalyst 4.0 is freely available at http://metaboanalyst.ca.
The growing application of gene expression profiling demands powerful yet user-friendly bioinformatics tools to support systems-level data understanding. NetworkAnalyst was first released in 2014 to address the key need for interpreting gene expression data within the context of protein-protein interaction (PPI) networks. It was soon updated for gene expression meta-analysis with improved workflow and performance. Over the years, NetworkAnalyst has been continuously updated based on community feedback and technology progresses. Users can now perform gene expression profiling for 17 different species. In addition to generic PPI networks, users can now create cell-type or tissue specific PPI networks, gene regulatory networks, gene co-expression networks as well as networks for toxicogenomics and pharmacogenomics studies. The resulting networks can be customized and explored in 2D, 3D as well as Virtual Reality (VR) space. For meta-analysis, users can now visually compare multiple gene lists through interactive heatmaps, enrichment networks, Venn diagrams or chord diagrams. In addition, users have the option to create their own data analysis projects, which can be saved and resumed at a later time. These new features are released together as NetworkAnalyst 3.0, freely available at https://www.networkanalyst.ca.
miRNet is an easy-to-use, web-based platform designed to help elucidate microRNA (miRNA) functions by integrating users' data with existing knowledge via network-based visual analytics. Since its first release in 2016, miRNet has been accessed by >20 000 researchers worldwide, with ∼100 users on a daily basis. While version 1.0 was focused primarily on miRNA-target gene interactions, it has become clear that in order to obtain a global view of miRNA functions, it is necessary to bring other important players into the context during analysis. Driven by this concept, in miRNet version 2.0, we have (i) added support for transcription factors (TFs) and single nucleotide polymorphisms (SNPs) that affect miRNAs, miRNA-binding sites or target genes, whilst also greatly increased (>5-fold) the underlying knowledgebases of miRNAs, ncRNAs and disease associations; (ii) implemented new functions to allow creation and visual exploration of multipartite networks, with enhanced support for in situ functional analysis and (iii) revamped the web interface, optimized the workflow, and introduced microservices and web application programming interface (API) to sustain high-performance, real-time data analysis. The underlying R package is also released in tandem with version 2.0 to allow more flexible data analysis for R programmers. The miRNet 2.0 website is freely available at https://www.mirnet.ca.
BackgroundIdentification of novel drug–target interactions (DTIs) is important for drug discovery. Experimental determination of such DTIs is costly and time consuming, hence it necessitates the development of efficient computational methods for the accurate prediction of potential DTIs. To-date, many computational methods have been proposed for this purpose, but they suffer the drawback of a high rate of false positive predictions.ResultsHere, we developed a novel computational DTI prediction method, DASPfind. DASPfind uses simple paths of particular lengths inferred from a graph that describes DTIs, similarities between drugs, and similarities between the protein targets of drugs. We show that on average, over the four gold standard DTI datasets, DASPfind significantly outperforms other existing methods when the single top-ranked predictions are considered, resulting in 46.17 % of these predictions being correct, and it achieves 49.22 % correct single top ranked predictions when the set of all DTIs for a single drug is tested. Furthermore, we demonstrate that our method is best suited for predicting DTIs in cases of drugs with no known targets or with few known targets. We also show the practical use of DASPfind by generating novel predictions for the Ion Channel dataset and validating them manually.ConclusionsDASPfind is a computational method for finding reliable new interactions between drugs and proteins. We show over six different DTI datasets that DASPfind outperforms other state-of-the-art methods when the single top-ranked predictions are considered, or when a drug with no known targets or with few known targets is considered. We illustrate the usefulness and practicality of DASPfind by predicting novel DTIs for the Ion Channel dataset. The validated predictions suggest that DASPfind can be used as an efficient method to identify correct DTIs, thus reducing the cost of necessary experimental verifications in the process of drug discovery. DASPfind can be accessed online at: http://www.cbrc.kaust.edu.sa/daspfind.Graphical abstractThe conceptual workflow for predicting drug-target interactions using DASPfindElectronic supplementary materialThe online version of this article (doi:10.1186/s13321-016-0128-4) contains supplementary material, which is available to authorized users.
Many scientific problems can be formulated as classification tasks. Data that harbor relevant information are usually described by a large number of features. Frequently, many of these features are irrelevant for the class prediction. The efficient implementation of classification models requires identification of suitable combinations of features. The smaller number of features reduces the problem’s dimensionality and may result in higher classification performance. We developed DWFS, a web-based tool that allows for efficient selection of features for a variety of problems. DWFS follows the wrapper paradigm and applies a search strategy based on Genetic Algorithms (GAs). A parallel GA implementation examines and evaluates simultaneously large number of candidate collections of features. DWFS also integrates various filtering methods that may be applied as a pre-processing step in the feature selection process. Furthermore, weights and parameters in the fitness function of GA can be adjusted according to the application requirements. Experiments using heterogeneous datasets from different biomedical applications demonstrate that DWFS is fast and leads to a significant reduction of the number of features without sacrificing performance as compared to several widely used existing methods. DWFS can be accessed online at www.cbrc.kaust.edu.sa/dwfs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.