Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk assessment of chemicals on humans and the environment. In this study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LD50) of pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, externally predictive and characterized by a good applicability domain. The best results were obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back propagation (BFGS) algorithm. The prediction accuracy for the external validation set was estimated by the Q(2)ext and the root mean square error (RMS) which are equal to 0.948 and 0.201, respectively. 98.6% of external validation set is correctly predicted and the present model proved to be superior to models previously published. Accordingly, the model developed in this study provides excellent predictions and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides.
Quantitative structure–property relationship (QSPR) modeling was investigated to predict drug and drug‐like compounds solubility in supercritical carbon dioxide. A dataset of 148 drug\drug‐like compounds, accounting for 3971 experimental data points (EDPs), was collected and used for modelling the relationship between selected molecular descriptors and solubility fraction data achieved by a nonlinear approach (Artificial neural network, ANN) based on molecular descriptors. Experimental solubility data for a given drug were published as a function of temperature and pressure. In the present study, 11 significant PaDEL descriptors (AATS3v, MATS2e, GATS4c, GATS3v, GATS4e, GATS3 s, nBondsM, AVP‐0, SHBd, MLogP, and MLFER_S), the temperature and the pressure were statistically proved to be sufficient inputs. The architecture of the optimized model was found to be {13,10,1}. Several statistical metrics, including average absolute relative deviation (AARD=3.7748 %), root mean square error (RMSE=0.5162), coefficient of correlation (r=0.9761), coefficient of determination (R2=0.9528), and robustise (Q2=0.9528) were used to validate the obtained model. The model was also subjected to an external test by using 143 EDPs. Sensitivity analysis and domain of application were examined. The overall results confirmed that the optimized ANN‐QSPR model is suitable for the correlation and prediction of this property.
Despite their indisputable importance around the world, the pesticides can be dangerous for a range of species of ecological importance such as honeybees (Apis mellifera L.). Thus, a particular attention should be paid to their protection, not only for their ecological importance by contributing to the maintenance of wild plant diversity, but also for their economic value as honey producers and crop-pollinating agents. For all these reasons, the environmental protection requires the resort of risk assessment of pesticides. The goal of this work was therefore to develop a validated QSAR model to predict contact acute toxicity (LD) of 111 pesticides to bees because the QSAR models devoted to this species are very scarce. The analysis of the statistical parameters of this model and those published in the literature shows that our model is more efficient. The QSAR model was assessed according to the OECD principles for the validation of QSAR models. The calculated values for the internal and external validation statistic parameters (Q and [Formula: see text] are greater than 0.85. In addition to this validation, a mathematical equation derived from the ANN model was used to predict the LD of 20 other pesticides. A good correlation between predicted and experimental values was found (R = 0.97 and RMSE = 0.14). As a result, this equation could be a means of predicting the toxicity of new pesticides.
The aim of this study was to devise a model that predicts the inhibition zone diameter using artificial neural networks. The concentration, temperature and the exposure time of our extract were taken as input variables. The neural architecture model 3-13-3 and a learning algorithm Quasi-Newton (BFGS) revealed a positive correlation between the experimental results and those artificially predicted, which were measured according to a mean squared error (RMSE) and an R 2 coefficient of E.coli (RMSE=1.28; R 2 =0,96), S.aureus (RMSE=1.46; R 2 =0,97) and B.subtilis (RMSE=1.88; R 2 =0,96) respectively. Based on these results, an external and an internal model validation were attained. A neuronal mathematical equation was created to predict the inhibition diameters for experimental data not included in the basic learning. Consequently, a good correlation was observed between the values predicted by the equation and those obtained experimentally, as demonstrated by the R 2 and RMSE values. The results regarding the sensitivity analysis showed that the concentration was the most determinant parameter compared to Temperature and Time variables. Ultimately, the model developed in this study will be used reliably to predict the variation of garlic extract's inhibition diameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.