There are many existing fraud detection techniques employed by card issuers and researchers globally. Despite this evolution of several fraud detection techniques, billions of dollars are still lost due to credit/debit card fraud every year. This paper proposes a fraud detection framework that uses online behavioural targeting (OBT) data and device fingerprinting (DF) to improve the efficiency of the fusion approach using Dempster-Shafer theory and Bayesian learning. OBT and DF provide massive insights into our online behaviour and can be used to pinpoint fraudsters as well as know shopping patterns of credit card users. These technologies are able to track and profile Internet users up to the level of what device they are using and what they are most likely to purchase. The paper also presents the theoretical underpinnings of the framework and its application scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.