In Thermosynechococcus elongatus BP-1, which is the preferred organism in recent structural studies of PSII, three psbA and two psbD genes code for three D1 and one D2 protein isoforms, respectively. The regulation and function of these genes and protein products is largely unknown. Therefore, we used quantitative RT-PCR to follow changes in the mRNA level of the respective genes, in combination with biophysical measurements to detect changes in the electron transport activity of Photosystem II under exposure to different visible and UV light, and temperature conditions. In cells which are acclimated to 40 micromol m(-2)s(-1) growth light conditions at 40 degrees C the main populations of the psbA and psbD transcripts arise from the psbA1 and psbD1 genes, respectively. When the temperature is raised to 60 degrees C psbA1 becomes the single dominating psbA mRNA species. Upon exposure of the cells to 500 micromol m(-2)s(-1) intensity visible light psbA3 replaces psbA1 as the dominating psbA mRNA species, and psbD2 increases at the expense of psbD1. UV-B radiation also increases the abundance of psbA3, and psbD2 at the expense of psbA1 and psbD1, respectively. From the different extent of total D1 protein loss in the absence and presence of lincomycin it was estimated that the PsbA3 protein isoform replaces PsbA1 in about 65% of PSII centers after 2 h of high light acclimation. Under the conditions of different psbA transcript distributions chlorophyll fluorescence and thermoluminescence measurements were applied to monitor charge recombination characteristics of the S2Q(A)(-) and S2Q(B)(-) states. We obtained faster decay of flash-induced chlorophyll fluorescence in the presence of DCMU, as well as lower peak temperature of the Q and B thermoluminescence bands when PsbA3 replaced PsbA1 as the main D1 protein isoform. The relevance of dynamic changes in the abundance of psbA and psbD transcript levels, as well as D1 protein isoforms in the acclimation of T. elongatus to changing environmental conditions is discussed.
Photosynthesis is the basic energy conversion process on Earth, which makes possible the utilization of the energy of sunlight for living organisms. However, light is not only the basic driving force of photosynthesis, but also an important stress factor at the same time. Light-induced decline of photosynthetic activity, generally denoted as photoinhibition, is a general phenomenon in all oxygenic photosynthetic organism under conditions when the metabolic processes cannot keep up with the electron flow produced by the primary photoreactions. Although light-induced damage occurs in all pigmented photosynthetic complexes the primary site of photoinhibition is the photosystem II (PSII) complex, which performs light-driven oxidation of water to protons and oxygen. The main factors, which are responsible for the light sensitivity of photosystem II, are excited pigment molecules, oxygen, manganese, as well as electron donors with high-oxidizing potential. Photosystem II can be efficiently protected from photodamage by the combination of harmless dissipation of absorbed light energy, nonradiative charge recombination, and repair of damaged reaction center complexes, making possible the safe utilization of light, the highly energetic substrate of photosynthesis.
Climate change, energy use and food security are the main challenges that our society is facing nowadays. Biofuels and feedstock from microalgae can be part of the solution if high and continuous production is to be ensured. This could be attained in year‐round, low cost, outdoor cultivation systems using strains that are not only champion producers of desired compounds but also have robust growth in a dynamic climate. Using microalgae strains adapted to the local conditions may be advantageous particularly in Nordic countries. Here, we review the current status of laboratory and outdoor‐scale cultivation in Nordic conditions of local strains for biofuel, high‐value compounds and water remediation. Strains suitable for biotechnological purposes were identified from the large and diverse pool represented by saline (NE Atlantic Ocean), brackish (Baltic Sea) and fresh water (lakes and rivers) sources. Energy‐efficient annual rotation for cultivation of strains well adapted to Nordic climate has the potential to provide high biomass yields for biotechnological purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.