In response to urgent demand to raise awareness of the nutritional and health benefits of tomato consumption and to advocate for healthy diets through increased sustainable production and consumption of fruits and vegetables, this study is intended to promote a healthy and balanced lifestyle, sharing the best practices of production and consumption. The aim of this research was to compare the effects of the growing system (field vs. plastic tunnel) and of genotype characteristics for organic improved tomato genotypes. The research was carried out in the 2019 and 2020 years on eight improved tomato genotypes. The results showed that the ascorbic acid content presented higher values for organic tomatoes cultivated in the field for all genotypes studied, with an upper limit of 18.57 mg·100 g−1 FW. In contrast, the content in β-carotene and lycopene showed higher values for genotypes grown under plastic tunnel conditions. Significant statistical differences were noticed concerning the mean values of all genotypes according to cultivation conditions (field vs. plastic tunnel) for most parameters excepting total soluble solids (TSS), titratable acidity (TA), maturity index (MI) and flavor index (FI). This highlights the major importance of the selection of some genotypes of tomatoes that respond positively to the organic cultivation system in terms of the presence of the antioxidants compounds (vitamin C, lycopene, and carotene) in representative quantities. Genotype 3 is highlighted by the highest content in carotene (7.4 mg·100 g−1 F.W.) and lycopene (8.4 mg·100 g−1 F.W.) and genotype 5 by the highest content in vitamin C (16.8 mg·100 g−1 F.W.). The results of the study suggest that by applying appropriate techniques for growing organic tomatoes in the plastic tunnel system, the antioxidant substrate can be optimized compared to the results obtained for the field system.
This study aimed to nutritionally and technologically characterize the meat produced by rabbit (Oryctolagus cuniculus, Flemish Giant breed, 50 farmed individuals) and hare (Lepus europaeus Pallas, 50 hunted individuals). Muscles were sampled from several carcass regions: dorsal torso—Longissimus dorsi (LD), thigh—Semimembranosus (SM), and upper arm—Triceps brachii (TB). To better depict the meat’s nutritional quality, the proximate composition and fatty acid profile were assessed, and then gross energy content and lipid sanogenic indices (Polyunsaturation—PI, atherogenic—AI, thrombogenic—TI, hypocholersyerolemic/hypercholesterolemic ratio—h/H, Nutritional Value Index—NVI) were calculated. pH values at 24 and 48 h post-slaughter, cooking loss (CL), and water-holding capacity (WHC) were the investigated technological quality traits. Gross energy was higher in rabbit TB samples, compared with hare, due to more accumulated lipids (p < 0.001). pH value was higher for TB muscles in both species; the WHC was higher for hare (p < 0.001), and CL was higher for rabbit (p < 0.001). The PI values were 6.72 in hare and 4.59 in rabbit, AI reached 0.78 in hare and 0.73 in rabbit, TI was calculated at 0.66 in hare and 0.39 in rabbit, and the h/H ratio reached 3.57 in hare and 1.97 in rabbit, while the NVI was 1.48 in hare and 1.34 in rabbit samples. Meat from both species is nutritionally valuable for human consumers, meeting nutritional values better than the meat of farmed or other wild species of fowl and mammals. Hare meat was found to be healthier than rabbit in terms of lower fat content, lighter energy, and better lipid health indices.
This study aimed to evaluate the fatty acid profile and health lipid indices of sheep meat (from 52 Karakul sheep from NE Romania). The effect of age at slaughter and the influence of muscle region were studied for nutritional parameters, especially the fatty acids from lipid fractions. Based on the fatty acid profiles and lipid contents, the sanogenic indices were determined for two sheep muscle groups. Thus, two different muscle regions from lamb and adult sheep were analysed from both genders, the Longissimus dorsi and Triceps brachii, to argue the advantages of each category and the rationalization, in terms of meat consumption, regarding their impact on human health. Sheep meat has many components with beneficial effects on human health. Apart from the fact that it is an important source of nutrients due to its high content of proteins, lipids, and minerals, it is also a product that can provide fundamental bioactive compounds for maintaining metabolic functions. The qualitative indices assessment revealed that lambs have meat with high PUFA content on Longissimus dorsi muscles (approx. 25% of total fatty acids), 0.68 for PUFA/SFA, with highest values for n-3 (approx. 8%) and n-6 (approx. 14%). Appropriate values can also be observed in Triceps brachii muscles from adult sheep. The sanogenic indices also presented good values for Longissimus dorsi from lambs and Triceps brachii from adult sheep (polyunsaturation index = 7.2–10.2; atherogenic index = 0.56–0.67; thrombogenic index = 0.78–0.96; hypocholesterolemic/hypercholesterolemic index = 2.4–2.7 (for Longissimus dorsi)).
The market request for organic vegetables has grown recently for their positive impact on healthy diets. Consumers have progressively shown preferences for various combinations of color, size, and shape of pepper fruits. Facilitating communication, collaboration, and participation in the selection of cultivars with superior performance, flavor, texture, and culinary attributes can represent a key tool in breeding for nutritional and culinary traits. The current research started from the premise that organic production involves achieving adequate nutritional and culinary quality of pepper fruits. The study was conducted to investigate traits related culinary quality of pepper genotypes, especially in the ripening phase of fruits, to select the best resources with a high antioxidant content for breeding programs. The biological material represented by nine genotypes of sweet pepper was cultivated in the open fields during 2019 and 2020 at the experimental stations of the Vegetable Research Development Station of Bacau and of Iasi University of Life Sciences. Agricultural practices and intensive breeding focused on yield and stress tolerance have indirectly led to a reduction in the nutrition and flavor of the produce. Complex approaches, including screening of consumer preferences, phenotyping, and use of modern genomics and analytical chemistry tools in breeding, together with participatory farmer-breeder-chef-consumer collaborations, can represent a strategy to facilitate the development of the next generation of crops aimed to meet the growing demands of safe and nutritionally vegetables featured by culinary standards as good flavor, color, and texture.
Lamiaceae is one of the largest botanical families, encompassing over 6000 species that include a variety of aromatic and medicinal spices. The current study is focused on three plants within this botanical family: basil (Ocimum basilicum L.), thyme (Thymus vulgaris L.), and summer savory (Satureja hortensis L.). These three species contain primary and secondary metabolites such as phenolic and flavonoid compounds, fatty acids, antioxidants, and essential oils and have traditionally been used for flavoring, food preservation, and medicinal purposes. The goal of this study is to provide an overview of the nutraceutical, therapeutic, antioxidant, and antibacterial key features of these three aromatics to explore new breeding challenges and opportunities for varietal development. In this context, a literature search has been performed to describe the phytochemical profile of both primary and secondary metabolites and their pharmacological uses, as well as to further explore accession availability in the medicine industry and also to emphasize their bioactive roles in plant ecology and biotic and abiotic stress adaptability. The aim of this review is to explore future perspectives on the development of new, highly valuable basil, summer savory, and thyme cultivars. The findings of the current review emphasize the importance of identifying the key compounds and genes involved in stress resistance that can also provide valuable insights for further improvement of these important medicinal plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.