Soft ferromagnetic materials constitute the main components of magnetic circuits in electromechanical devices. However, their magnetic and magnetostrictive properties are strongly affected by mechanical loading. This can lead to a decrease in the performance and the efficiency of these devices and to a potential increase of the emitted noise. Aware of the importance of these factors, this paper proposes to study the effect of the mechanical stress on the magnetic and magneto-elastic properties of non-oriented electrical steel sheets. The stress dependency of permeability and Villari effect has been studied. Measurements of the magnetostrictive strain under applied stress are presented and the anisotropic behavior under stress is described. Moreover, the ΔE effect has been observed and analyzed. The novelty of this work is the extension of the measurements to many directions of cut with respect to the rolling direction under tensile and compressive stress, as well as the demonstration of the magnetic and magnetostrictive anisotropy under uniaxial stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.