Rapid-thermal annealing (RTA) of InSb precursor films, deposited by sputtering using an Ar plasma at room temperature, has been investigated to achieve high carrier mobility on low-cost glass substrates. Although InSb films containing residual Ar (∼1%) were partially lost by evaporation during RTA, such evaporation during RTA is suppressed by reducing the residual Ar to ∼0.3%. The crystallinity of the films is significantly increased by RTA at temperatures above 400 °C. The electron mobilities of the films increase with increasing RTA temperature up to 490 °C, showing the maximum values (9000–10 000 cm2 V−1 s−1) at 490 °C, and then, the mobilities decrease at RTA temperatures above 490 °C. The mobilities of 9000–10 000 cm2 V−1 s−1 are obtained for films with a wide range of thickness (300–1000 nm) grown at 490 °C. Detailed analysis indicated that the high carrier mobilities are realized by preferentially (111)-oriented large crystal domains (diameter: >100 μm), obtained by the regrowth of randomly oriented small grains, together with a low barrier height (16 meV) at the sub-domain boundaries (twin boundaries) in the large domains. The RTA after the sputtering technique will facilitate high-performance InSb-based devices with low production costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.