In orthognathic surgery, patient-specific osteosynthesis implants (PSIs) represent a novel approach for the reproduction of the virtual surgical planning on the patient. The aim of this study is to analyse the quality of maxillo-mandibular positioning using a hybrid mandible-first mandibular-PSI-guided procedure on twenty-two patients while the upper maxilla was fixed using manually bent stock titanium miniplates. The virtual surgical plan was used to design PSIs and positioning guides, which were then 3D printed using biocompatible materials. A Cone Beam Computed Tomography (CBCT) scan was performed one month after surgery and postoperative facial skeletal models were segmented for comparison against the surgical plan. A three-dimensional cephalometric analysis was carried out on both planned and obtained anatomies. A Spearman correlation matrix was computed on the calculated discrepancies in order to achieve a more comprehensive description of maxillo-mandibular displacement. Intraoperatively, all PSIs were successfully applied. The procedure was found to be accurate in planned maxillo-mandibular positioning reproduction, while maintaining a degree of flexibility to allow for aesthetics-based verticality correction in a pitch range between −5.31 and +1.79 mm. Such a correction did not significantly affect the achievement of planned frontal symmetry.
Current scientific evidence on how orthognathic surgery affects the airways morphology remains contradictory. The aim of this study is to investigate the existence and extension of a neutral-impact interval of bony segments displacement on the upper airways morphology. Its upper boundary would behave as a skeletal displacement threshold differentiating minor and major jaw repositioning, with impact on the planning of the individual case. Pre- and post-operative cone beam computed tomographies (CBCTs) of 45 patients who underwent maxillo-mandibular advancement or maxillary advancement/mandibular setback were analysed by means of a semi-automated three-dimensional (3D) method; 3D models of skull and airways were produced, the latter divided into the three pharyngeal subregions. The correlation between skeletal displacement, stacked surface area and volume was investigated. The displacement threshold was identified by setting three ∆Area percentage variations. No significant difference in area and volume emerged from the comparison of the two surgical procedures with bone repositioning below the threshold (approximated to +5 mm). A threshold ranging from +4.8 to +7 mm was identified, varying in relation to the three ∆Area percentages considered. The ∆Area increased linearly above the threshold, while showing no consistency in the interval ranging from −5 mm to +5 mm.
Objectives The aim of this study is to introduce a novel 3D cephalometric analysis (3DCA) and to validate its use in evaluating the reproducibility of virtual orthodontic-surgical planning (VOSP) in surgery-first approach (SF) comparing VOSP and post-operative outcome (PostOp). Methods The cohort of nineteen patients underwent bimaxillary orthognathic surgery following the VOSP designed in SimPlant O&O software by processing cone-beam computed tomography (CBCT) scans and intraoral digital scanning of the dental arches. Said records were re-acquired once the post-operative orthodontic treatment was completed. The 3DCA was performed by three expert operators on VOSP and PostOp 3D models. Descriptive statistics of 3DCA measures were evaluated, and outcomes were compared via Wilcoxon test. Results In the comparison between cephalometric outcomes against planned ones, the following values showed significant differences: Wits Index, which suggests a tendency towards skeletal class III in PostOp (p = 0.033); decreased PFH/AFH ratio (p = 0.010); decreased upper incisors inclination (p < 0.001); and increased OVJ (p = 0.001). However not significant (p = 0.053), a tendency towards maxillary retroposition was found in PostOp (A/McNamara VOSP: 5.05 ± 2.64 mm; PostOp: 4.1 ± 2.6 mm). On average, however, when McNamara’s plane was considered as reference, a tendency to biprotrusion was found. Upper incisal protrusion was greater in PostOp as an orthodontic compensation for residual maxillary retrusion (VOSP: 5.68 ± 2.56 mm; PostOp: 6.53 ± 2.63 mm; p = 0.084). Finally, the frontal symmetry in relation to the median sagittal plane decreased in craniocaudal direction. Limitations A potential limit of studies making use of closest point distance analysis is represented by the complexity that surgeons and orthodontists face in applying this three-dimensional evaluation of SF accuracy/predictability to everyday clinical practice and diagnosis. Also, heterogeneity and limited sample size may impact the results of the study comparison. Conclusions The presented 3DCA offers a valid aid in performing VOSP and analysing orthognathic surgery outcomes, especially in SF. Thanks to the cephalometric analysis, we found that surgery-first approach outcome unpredictability is mainly tied to the sagittal positioning of the maxilla and that the transverse symmetry is progressively less predictable in a craniocaudal direction.
In orthognathic surgery, patient-specific osteosynthesis implants (PSIs) represent a novel approach for the reproduction of the virtual surgical planning on the patient. The aim of this study is to analyse the quality of maxillo-mandibular positioning using a hybrid mandible-first mandibular-PSI guided procedure on twenty-two patients while the upper maxilla was fixed using manually-bent stock titanium miniplates. The virtual surgical plan was used to guide the design of PSIs and positioning guides, which were then 3D printed using biocompatible materials. A CBCT scan was performed one month after surgery and postoperative facial skeletal models were segmented for comparison against the surgical plan. A three-dimensional cephalometric analysis was carried out on both planned and obtained anatomies. A Spearman correlation matrix was computed on the calculated discrepancies, in order to achieve a more comprehensive description of maxillo-mandibular displacement. Intraoperatively, all PSIs were successfully applied. The procedure was found to be accurate in planned maxillo-mandibular positioning reproduction, while maintaining a degree of flexibility to allow for aesthetics-based verticality correction in a pitch range between-5.31 and +1.79 mm. Such correction did not significantly affect the achievement of planned frontal symmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.