New Mn(II) macrocyclic pentaamine complexes derived from the biscyclohexyl-pyridine complex, M40403 ([manganese(II)dichloro[(4R,9R,14R,19R)-3,10,13,20,26-pentaazatetracyclo[20.3.1.0.(4,9)0(14,19)]hexacosa-1(26),-22(23),24-triene]]), are described here. The complex M40403 was previously shown to be a superoxide dismutase (SOD) catalyst with rates for the catalytic dismutation of superoxide to oxygen and hydrogen peroxide at pH = 7.4 of 1.2 x 10(+7) M(-1) s(-1).(1) The use of the computer-aided design paradigm reported previously for this class of Mn(II) complexes(2,3) led to the prediction that the 2S,21S-dimethyl derivative of M40403 should possess superior catalytic SOD activity. The synthesis of this new macrocyclic Mn(II) complex, [manganese(II)dichloro[2S, 21S-dimethyl-(4R,9R,14R,19R)-3,10,13,20,26-pentaazatetracyclo[20.3.1.0.(4,9)0(14,19)]hexacosa-1(26),22(23),24-triene]], 5, was accomplished via a high yield template condensation utilizing the linear tetraamine, N,N'-Bis[(1R,2R)-[2-(amino)]cyclohexyl]-1,2-diaminoethane, 1, 2,6-diacetylpyridine, and MnCl(2) to form the macrocyclic diimine complex, 2, which then is reduced. The two other possible dimethyl diastereomers of 5 (2R,21R-dimethyl,3, and 2R,21S-dimethyl, 6) were also prepared via reduction of the diimine complex 2. Two of these complexes, 3 and 5, were characterized by X-ray structure determination confirming their absolute stereochemistry as 2R,21R-dimethyl and 2S,21S-dimethyl, respectively. The results of the MM calculations which predict that the 2S,21S-dimethyl complex, 5, should be a high activity catalyst and that the 2R,21R-dimethyl complex, 3, should have little or no catalytic activity are presented. The catalytic SOD rates for these complexes are reported for each of these complexes and a correlation with the modeling predictions is established showing that 2R,21R-complex, 3, has no measurable catalytic rate, while the 2R,21S complex, 6, is identical to M40403, and the 2S,21S- complex, 5, possesses a very fast rate at pH = 7.4 of 1.6 x 10(+9) M(-1) s(-1) exceeding that of the native mitochondrial MnSOD enzymes.
Bibracchial lariat ethers based upon 4,13-diaza-18-crown-6 having -(CH2)3-sidearms terminated in adenine or thymine have been prepared and characterized. The three structures are as follows: adenine-(CH2)3-(N18N>- and adenine-(CH2)3-(N18N)-(CH2)3-thymine (A-O-T). Association of the nucleotide bases was expected to afford molecular boxes or other aggregates that would be stabilized by interactions between or among the nucleotide bases. These compounds have been studied in solution by1 H-NMR spectroscopy and by vapor pressure osmometry to determine the extent of association as well as what interactions occur between the bases. The 'H-NMR solution studies involved both temperature and concentration dependence and NOE studies. Several lines of evidence make clear that association does occur in CDC13 with an association constant for A-O-A with T-O-T of 85 5 M~'. Both intraand intermolecular H-bonding interactions are detected. Hoogsteen binding modes appear to play a very important role in these flexible systems. The A-O-A-T-O-T box may also comprise a ditopic receptor system in which the sides of the box are Ade::Thy pairs and the ends are crown ethers. We have studied such systems in the presence of decanediyldiammonium and dodecanediyldiammonium salts and report evidence for a ternary induced-fit receptor complex.
A wide variety of nanomaterials are currently being developed for use in the detection and treatment of human diseases. However, there is no systematic way to measure and predict the action of such materials in biological contexts. Lipid-encapsulated nanoparticles (NPs) are a class of nanomaterials that includes the liposomes, the most widely used and clinically proven type of NPs. Liposomes can, however, activate the complement system, an important branch of innate immunity, resulting in undesirable consequences. Here, we describe the complement response to lipid-encapsulated NPs that are functionalized on the surface with various lipid-anchored gadolinium chelates. We developed a quantitative approach to examine the interaction of NPs with the complement system using in vitro assays and correlating these results with those obtained in an in vivo mouse model. Our results indicate that surface functionalization of NPs with certain chemical structures elicits swift complement activation that is initiated by a natural IgM antibody and propagated via the classical pathway. The intensity of the response is dependent on the chemical structures of the lipid-anchored chelates and not zeta potential effects alone. Moreover, the extent of complement activation may be tempered by complement inhibiting regulatory proteins that bind to the surface of NPs. These findings represent a step forward in the understanding of the interactions between nanomaterials and the host innate immune response and provide the basis for a systematic structure-activity relationship study to establish guidelines that are critical to the future development of biocompatible nanotherapeutics.
Saccharomyces cerevisiae myristoylCoA:protein N-myristoyltransferase (Nmt1p) is an essential enzyme that catalyzes the transfer of myristic acid (C14:0) from myristoylCoA to the N-terminus of cellular proteins with a variety of functions. Nmts from an assortment of species display remarkable in vivo specificity for this rare acyl chain. To better understand the mechanisms underlying this specificity, we have used isothermal titration calorimetry as well as kinetic measurements to study the interactions of Nmt1p with acylCoA analogs having variations in chain length and/or conformation, analogs with alterations in the thioester bond, and analogs with or without a 3'-phosphate in their CoA moiety. MyristoylCoA binds to Nmt1p with a Kd of 15 nM and a large exothermic deltaH (-25 kcal/mol). CoA derivatives of C12:0-C16:0 fatty acids bind to Nmt1p with similar affinity, but with much smaller deltaH and a correspondingly less negative TdeltaS than myristoylCoA. Replacing the thioester carbonyl group with a methylene or removing the 3'-phosphate of CoA is each sufficient to prevent the low enthalpy binding observed with myristoylCoA. The carbonyl and the 3'-phosphate have distinct and important roles in chain length recognition over the range C12-C16. Acyltransferase activity parallels binding enthalpy. The naturally occurring cis-5-tetradecenoylCoA and cis-5,8-tetradecadienoylCoA are used as alternative Nmt substrates in retinal photoreceptor cells, even though they do not exhibit in vitro kinetic or thermodynamic properties that are superior to those of myristoylCoA. The binding of an acylCoA is the first step in the enzyme's ordered reaction mechanism. Our findings suggest that within cells, limitation of Nmt substrate usage occurs through control of acylCoA availability. This indicates that full understanding of how protein acylation is controlled not only requires consideration of the acyltransferase and its peptide substrates but also consideration of the synthesis and/or presentation of its lipid substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.