In recent decades, the warming in the Arctic has been much faster than in the rest of the world, a phenomenon known as Arctic amplification. Numerous studies report that the Arctic is warming either twice, more than twice, or even three times as fast as the globe on average. Here we show, by using several observational datasets which cover the Arctic region, that during the last 43 years the Arctic has been warming nearly four times faster than the globe, which is a higher ratio than generally reported in literature. We compared the observed Arctic amplification ratio with the ratio simulated by state-of-the-art climate models, and found that the observed four-fold warming ratio over 1979–2021 is an extremely rare occasion in the climate model simulations. The observed and simulated amplification ratios are more consistent with each other if calculated over a longer period; however the comparison is obscured by observational uncertainties before 1979. Our results indicate that the recent four-fold Arctic warming ratio is either an extremely unlikely event, or the climate models systematically tend to underestimate the amplification.
The Finnish Meteorological Institute and Vaisala have established a mesoscale weather observational network in southern Finland. The Helsinki Testbed is an open research and quasi-operational program designed to provide new information on observing systems and strategies, mesoscale weather phenomena, urban and regional modeling, and end-user applications in a high-latitude (~60°N) coastal environment. The Helsinki Testbed and related programs feature several components: observing system design and implementation, small-scale data assimilation, nowcasting and short-range numerical weather prediction, public service, and commercial development of applications. Specifically, the observing instrumentation focuses on meteorological observations of meso-gamma-scale phenomena that are often too small to be detected adequately by traditional observing networks. In particular, more than 40 telecommunication masts (40 that are 120 m high and one that is 300 m high) are instrumented at multiple heights. Other instrumentation includes one operational radio sounding (and occasional supplemental ones), ceilometers, aerosol-particle and trace-gas instrumentation on an urban flux-measurement tower, a wind profiler, and four Doppler weather radars, three of which have dual-polarimetric capability. The Helsinki Testbed supports the development and testing of new observational instruments, systems, and methods during coordinated field experiments, such as the NASA Global Precipitation Measurement (GPM). Currently, the Helsinki Testbed Web site typically receives more than 450,000 weekly visits, and more than 600 users have registered to use historical data records. This article discusses the three different phases of development and associated activities of the Helsinki Testbed from network development and observational campaigns, development of the local analysis and prediction system, and testing of applications for commercial services. Finally, the Helsinki Testbed is evaluated based on previously published criteria, indicating both successes and shortcomings of this approach.
Abstract. Understanding how fire weather danger indices changed in the past and how such changes affected forest fire activity is important in a changing climate. We used the Canadian Fire Weather Index (FWI), calculated from two reanalysis data sets, ERA-40 and ERA Interim, to examine the temporal variation of forest fire danger in Europe in 1960–2012. Additionally, we used national forest fire statistics from Greece, Spain and Finland to examine the relationship between fire danger and fires. There is no obvious trend in fire danger for the time period covered by ERA-40 (1960–1999), whereas for the period 1980–2012 covered by ERA Interim, the mean FWI shows an increasing trend for southern and eastern Europe which is significant at the 99% confidence level. The cross correlations calculated at the national level in Greece, Spain and Finland between total area burned and mean FWI of the current season is of the order of 0.6, demonstrating the extent to which the current fire-season weather can explain forest fires. To summarize, fire risk is multifaceted, and while climate is a major determinant, other factors can contribute to it, either positively or negatively.
An increasing number of people leave their mark on the Internet by publishing personal notes (e.g., text, photos, videos) on Web-based services such as Facebook and Flickr. This creates a vast source of information that could be utilized in meteorology, for example, as a complement to traditional weather observations. Photo-sharing services offer an increasing amount of useful data, as modern mobile devices can automatically include coordinates and time stamps on photos, and users can easily tag them for content. In this study, different weather-related photos and their metadata were accessed from the photo-sharing service Flickr, and their reliability was assessed. Case studies of hail detection were then performed. The position of hail detected in the atmosphere by radar was compared with positions of Flickr photos depicting hail on the ground. As a result of this preliminary study, the authors think that further exploration of the use of Flickr photographs is warranted, and the consideration of other social media as data sources can be recommended.
Snow cover plays an important role in the climate system by changing the energy and mass transfer between the atmosphere and the surface. Reliable observations of the snow cover are difficult to obtain without satellites. This paper introduces a new algorithm for satellite-based snow-cover detection that is in operational use for Meteosat in the European Organisation for the Exploitation of Meteorological Satellites Satellite Application Facility on Land Surface Analysis (LSA SAF). The new version of the product is compared with the old version and the NOAA/National Environmental Satellite, Data, and Information Service Interactive Multisensor Snow and Ice Mapping System (IMS) snow-cover product. The new version of the LSA SAF snow-cover product improves the accuracy of snow detection and is comparable to the IMS product in cloud-free conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.