BackgroundPhenolic acids are covalently bound to the arabinoxylan fibre matrix of wheat aleurone layer. In order to be bioavailable they need to be released by endogenous or bacterial enzymes and absorbed within the intestinal lumen. The intestinal microbiota can metabolize phenolic acids and other food-born phytochemicals. However, the effect of structure of the cereal bran or aleurone layer on these processes is not comprehensively studied.MethodsThe structure of aleurone layer was modified either by dry-grinding or by enzymatic treatments with xylanase alone or in combination with feruloyl esterase. Diet induced obese C57BL6/J mice were fed with high-fat diets containing either pure ferulic acid, or one of the four differentially treated aleurone preparations for 8 weeks. The diets were designed to be isocaloric and to have similar macronutrient composition. The urinary metabolite profiles were investigated using non-targeted LC-qTOF-MS-metabolomics approach.ResultsThe different dietary groups were clearly separated in the principal component analysis. Enzymatic processing of aleurone caused increased excretion of ferulic acid sulfate and glycine conjugates reflecting the increase in unbound form of readily soluble ferulic acid in the diet. The urinary metabolite profile of the diet groups containing native and cryo-ground aleurone was more intense with metabolites derived from microbial processing including hippuric acid, hydroxyl- and dihydroxyphenylpropionic acids. Furthermore, aleurone induced specific fingerprint on the urinary metabolite profile seen as excretion of benzoxazinoid metabolites, several small dicarboyxlic acids, and various small nitrogen containing compounds.ConclusionsThe structural modifications on wheat aleurone fraction resulted in altered metabolism of aleurone derived phenolic acids and other phytochemicals excreted in urine of diet-induced obese mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.