Abstract-In this paper we present a recognition scheme which is both reliable and fast. The scheme comprises the simultaneous harmonized use of three powerful detection algorithms, the hyper permutation network (HPN), a hierarchical contour matching (HCM) algorithm and a cascaded classifier approach. Each algorithm is evaluated separately and afterwards, based on the evaluation results, the fusion of the detection results is performed by a particle filter approach.
Pedestrian detection is of particular interest to the automotive domain, where an accurate estimation of a pedestrian's position is the first step towards reliable collision avoidance systems. Driven by rapid advances in technology, several systems to detect pedestrians in front of a moving vehicle have been proposed in recent years. This paper introduces a novel pedestrian detection system for low-speed driving scenarios, capable of detecting pedestrians in a 360-degree fashion around the vehicle. Detected pedestrians are displayed to the driver in an intuitive way using a dynamically generated Birds's Eye View image. Furthermore, a novel classifier architecture to efficiently handle this complex application scenario is provided. By combining the processing speed of a classifier cascade with the discriminative power of a multi-stage neural network, the system achieves state of the art performance while retaining real-time capability. To keep classifier complexity low, a new feature-based inter-stage information transfer method is presented. All classifier components are compared to recent pedestrian detection approaches and evaluated on a real-world data set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.