We investigate Néron models of Jacobians of singular curves over strictly Henselian discretely valued fields, and their behaviour under tame base change. For a semiabelian variety, this behaviour is governed by a finite sequence of (a priori) real numbers between 0 and 1, called jumps. The jumps are conjectured to be rational, which is known in some cases. The purpose of this paper is to prove this conjecture in the case where the semiabelian variety is the Jacobian of a geometrically integral curve with a push-out singularity. Along the way, we prove the conjecture for algebraic tori which are induced along finite separable extensions, and generalize Raynaud's description of the identity component of the Néron model of the Jacobian of a smooth curve (in terms of the Picard functor of a proper, flat, and regular model) to our situation. The main technical result of this paper is that the exact sequence which decomposes the Jacobian of one of our singular curves into its toric and Abelian parts extends to an exact sequence of Néron models. Previously, only split semiabelian varieties were known to have this property.
We prove that a Kummer surface defined over a complete strictly Henselian discretely valued field K of residue characteristic different from 2 admits a strict Kulikov model after finite base change. The Kulikov models we construct will be schemes, so our results imply that the semistable reduction conjecture is true for Kummer surfaces in this setup, even in the category of schemes. Our construction of Kulikov models is closely related to an earlier construction of Künnemann, which produces semistable models of Abelian varieties. It is well-known that the special fibre of a strict Kulikov model belongs to one of three types, and we shall prove that the type of the special fibre of a strict Kulikov model of a Kummer surface and the toric rank of a corresponding Abelian surface are determined by each other. We also study the relationship between this invariant and the Galois representation on the second ℓ-adic cohomology of the Kummer surface. Finally, we apply our results, together with earlier work of Halle-Nicaise, to give a proof of the monodromy conjecture for Kummer surfaces in equal characteristic zero.
For a nice algebraic variety X over a number field F , one of the central problems of Diophantine Geometry is to locate precisely the set X(F ) inside X(A F ), where A F denotes the ring of adèles of F . One approach to this problem is provided by the finite descent obstruction, which is defined to be the set of adelic points which can be lifted to twists of torsors for finite étale group schemes over F on X. More recently, Kim proposed an iterative construction of another subset of X(A F ) which contains the set of rational points. In this paper, we compare the two constructions. Our main result shows that the two approaches are equivalent.
We study the structure of Jacobians of geometrically reduced curves over arbitrary (i. e., not necessarily perfect) fields. We show that, while such a group scheme cannot in general be decomposed into an affine and an Abelian part as over perfect fields, several important structural results for these group schemes nevertheless have close analoga over non-perfect fields. We apply our results to prove two conjectures due to Bosch-Lütkebohmert-Raynaud about the existence of Néron models and Néron lft-models over excellent Dedekind schemes in the special case of Jacobians of geometrically reduced curves. Finally, we prove some existence results for semi-factorial models and related objects for general geometrically integral curves in the local case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.